DOI QR코드

DOI QR Code

The Characteristics of Acoustic Emission Signal under Composite Destruction on GFRP Gas Cylinder

유리섬유강화 복합재료 가스실린더의 복합재료 파괴시 발생하는 음향방출 특성

  • Received : 2013.09.12
  • Accepted : 2013.10.23
  • Published : 2013.10.30

Abstract

This study is investigation of the characteristics for acoustic emission signal generated by destruction on glass fiber bundles and specimen that was machined composite materials surrounding the outside of GFRP cylinder. The Amplitude of acoustic emission signal gets bigger as the cutting angle of knife increases. Accordingly, the number of hits in destruction of composite materials specimen have more in longitudinal direction (longitudinal direction to the glass fiber) than in hoop direction (horizontal direction to the glass fiber) while the amplitude of signals were bigger in hoop direction than longitudinal direction. It was found out that the amplitude of the glass fiber breakage is more than 40 dB and that the amplitude of signal for matrix crack was less than 40 dB because matrix crack signal was not observed when threshold value is 40 dB and matrix crack signal suddenly appered when threshold value is 32 dB. The slope of the amplitude is related to the acoustic emission source and the slope of the amplitude of the horizontal and vertical directions are 0.16 and 0.08. In particular, The slope of the amplitude of longitudinal direction breakage appear similar to the glass fiber breakage and therefore Acoustic emission source of longitudinal direction breakage is estimated the glass fiber breakage.

본 연구에서는 유리섬유강화 복합재료 가스실린더의 복합재료의 파괴시 발생하는 음향방출신호의 특성을 살펴보기 위하여 실린더의 외부를 감싸고 있는 복합재료를 유리섬유묶음과 시편으로 가공하여 파괴시험을 실시하였다. 유리섬유묶음에 칼날을 압입하여 유리섬유가 파괴될 때 발생한 음향방출 신호의 진폭은 칼날의 절단각도가 커짐에 따라 유리섬유의 절단면이 증가되어 음향방출신호의 진폭이 증가되는 것으로 판단된다. 또한 복합재료 시편파괴시 감긴방향 파괴는 수직방향 파괴에 비해 hit 수는 적지만 섬유 절단각이 커짐에 따라 진폭은 높게 나타났다. 섬유감긴방향으로 시편파괴시 신호문턱값을 32 dB로 설정했을 경우는 40 dB로 설정했을 때는 나타나지 않았던 기지파괴 신호가 급격하게 나타나는 것으로 보아 기지파괴시 신호진폭은 40 dB 이하이고 유리섬유 파괴신호의 진폭은 40 dB이상 임을 알 수 있었다. 음향방출 신호의 진폭기울기는 음향방출원과 관련이 있으며, 섬유감긴방향으로 칼날을 압입했을 때 그 기울기는 0.08이고 수직방향일 때는 0.16로 구분되었다. 특히 수직방향 파괴의 경우 유리섬유묶음의 절단시 나타나는 진폭 기울기와 유사하여 시편의 수직방향파괴시 발생하는 신호의 주 음향방출원은 유리섬유파괴로 추정할 수 있다.

Keywords

References

  1. J. K. Lee and J. H. Lee, "a study on fatigue damage accumulation of MMC using ultrasonic wave and acoustic emission," Journal of KSCM, Vol. 13 No. 4, pp. 1-10 (2000)
  2. J. O. Lee, J. S. Lee, K. S. Cho, S. H. Lee and S. K. Oh "The analysis of failure mechanism during tensile test of CFRP," Journal of KSCM, Vol. 5, No. 2, pp. 11 (1992)
  3. B. B. Lee, S. Lee, H, J, Joo and S. J. Yoon, "Characteristics of structural behavior and safety estimation of water supply GFRP pipe," Journal of KSCM, Vol. 22 No. 3, pp. 1-8 (2009)
  4. L. M. Rogers, "Structural and engineering monitoring by acoustic emission method - fundamentals and applications," Technical Investigation Department, pp. 59-63 (2001)
  5. B. Gutenberg and C. F. Richter, "Seismicity of the Earth and Associcated Phenomena," Princeton University Press, pp. 310 (1954)
  6. A. A. Pollock, "Acoustic emission-2: Acoustic emission amplitudes," Non-Destructive Testing, Vol. 6 No. 4, pp. 264-269 (1973) https://doi.org/10.1016/0029-1021(73)90074-1
  7. S. Yuyama, T. Kishi and Y. Hisamatsu, "Detection and analysis of crevice corrosion-SCC process by the use of AE technique," The Iron and Steel Institute of Japan (ISIJ), Vol. 64, No. 14, pp. 2019-2028 (1982)
  8. D. Short and J. Summerscales, "Amplitude distribution acoustic emission signatures of unidirectional fibre composite hybrid materials," Composites, Vol. 15 No. 3, pp. 200-206 (1984) https://doi.org/10.1016/0010-4361(84)90275-1
  9. Mitsuo Ozawa, Shinya Uchida, Toshiro Kamada and Hiroaki Morimoto, "Study of mechanisms of explosive spalling in high-strength concrete at high temperatures using acoustic emission," Construction and Building Materials, Vol. 37, pp. 621-628 (2012) https://doi.org/10.1016/j.conbuildmat.2012.06.070
  10. H. S. Jee, J. O. Lee, N. H. Ju, J. K. Lee and C. H. So, "Distribution of acoustic emission parameters during load holding for CNG vehicle fuel tank," Journal of MRSK, Vol. 21, No. 11, pp. 623-627 (2012) https://doi.org/10.3740/MRSK.2011.21.11.623