• 제목/요약/키워드: Incubation period

Search Result 697, Processing Time 0.025 seconds

Statistical analysis of estimating incubation period distribution and case fatality rate of COVID-19 (COVID-19 바이러스 잠복 시간 분포 추정과 치사율 추정을 위한 생존 분석의 적용)

  • Ki, Han Jeong;Kim, Jieun;Kim, Sohee;Park, Juwon;Lee, Joohaeng;Kim, Yang-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.777-789
    • /
    • 2020
  • COVID-19 has been rapidly spread world wide since late December 2019. In this paper, our interest is to estimate distribution of incubation time defined as period between infection of virus and the onset. Due to the limit of accessibility and asymptomatic feature of COVID-19 virus, the exact infection and onset time are not always observable. For estimation of incubation time, interval censoring technique is implemented. Furthermore, a competing risk model is applied to estimate the case fatality and cure fraction. Based on the result, the mean incubation time is about 5.4 days and the fatality rate is higher for older and male patient and the cure rate is higher at younger,female and asymptomatic patient.

Ruminal microbial responses in fermentation characteristics and dry matter degradability to TDN level of total mixed ration

  • Lee, Seung-Uk;Jo, Jin-Ho;Park, Sung-Kwon;Choi, Chang-Weon;Jeong, Jun;Chung, Ki-Young;Chang, Sun-Sik;Li, Xiang Zi;Choi, Seong-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.80-86
    • /
    • 2016
  • An in vitro trial was conducted to examine the effects of total mixed rations (TMR) on fermentation characteristics and effective degradability (ED) by rumen microbes. Three TMR diets were growing period TMR (GR-TMR, 67% TDN), early fattening period TMR (EF-TMR, 75.4% TDN) and late fattening TMR (LF-TMR, 80% TDN). Three TMR diets (3 g of TMRs in each incubation bottles) was added to the mixed culture solution of stained rumen fluid with artificial saliva (1:1, v/v) and incubated anaerobically for 48 hours at $39^{\circ}C$. The pH in all incubation solutions tended to decrease up to 48h, but the opposite results were found in concentration of total gas production, ammonia-N and total VFA in all incubations.The total gas production (p<0.05) in LF-TMR was highest compared with those of other diets. Also, concentration of total VFA was tended to increase in LF-TMR compared with other TMR diets in all incubations. The EDDM in both EF-TMR and LF-TMR was tended to high compared with GR-TMR (p=0.100). In this in vitro trials, concentration of propionate in all incubation solution was not affected by increased concentration of TDN. The results of the present in vitro study indicate that TMR may provide more favorable condition for nutrient digestion both in the rumen.

Preparation of Natural Polymer-CaP Composite Films (천연 고분자-칼슘 포스페이트 복합 박막 제조)

  • Kim, Ka-Eun;Mo, Man-Jin;Lee, Woo-Kul
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.112-116
    • /
    • 2005
  • We investigated the surface modification method for the preparation of organic-inorganic hybrid composite thin film. Gelatin obtained from the decomposition of collagen was allowed to adsorb in a polystyrene tissue culture dish for 2 h to from layers of gelatin. Supersaturated ionic solution of calcium and phosphorus was injected on the gelatin adsorbed layer to form calcium phosphate thin film. During the initial period of incubation, nucleates were formed. With increase of the incubation time, CaP (calcium phosphate) thin film grew on the surface of the culture dish. The gelatin/CaP thin film displayed the highly porous three-dimensional surface structure. Attenuated, total reflectance Fourier transform, infra-red spectroscopy (ATR-FTIR) was used to analyze the chemical properties of CaP film. The analysis demonstrated that the CaP film formed at initial period of treatment appeared to be amorphous. With increase of incubation time, the crystallinity of the film was slightly increased, but the presence of the peaks for the low crystalline CaP confirmed that the CaP thin film prepared in this study was poorly crystallized.

RUMINAL SOLUBILIZATION OF MACROMINERALS IN SELECTED PHILIPPINE FORAGES

  • Serra, S.D.;Serra, A.B.;Ichinohe, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.1
    • /
    • pp.75-81
    • /
    • 1996
  • The dry matter (DM) disappearance and ruminal solubility of calcium (Ca), phosphorus (P), magnesium (Mg) and potassium (K) in eight Philippine forages were studied. The forages were: paragrass (Brachiaria mutica (Forsk.) Stapf), stargrass (Cynodon plectostachyum Pilger), napiergrass (Pennisetum purpureum Schumach), clopo (Calopogonium mucconoides Desv.), centrocema (Centrocema pubescens Benth.), gliricidia (Gliricidia sepium (Jacq.) Walp.), leucaena (Leucaena leucocephala (Lam.) de Wit.) and sesbania (Sesbania grandiflora (L.) Poir. Nylon bags with samples were incubated for 0, 3, 6, 12, 24, 48 and 72 h in rumen cannulated sheep. The 0-h bags were washed with deionized water. For the 0-h samples, 20.4, 17.2, 50.7, 52.2 and 80.1% of the DM, Ca, P, Mg and K was solubilized, respectively. At 3-h incubation period, DM disappearance was 10 percentage units higher than that of 0-h incubation whereas mineral disappearance increased by 43, 21, 30 and 13% for Ca, P, Mg and K, respectively. At 72-h incubation period, greater proportion of DM, Ca, especially in P, Mg and K was solubilized with a value of 73.8, 71.5, 85.6, 91.4 and 98.2%, respectively. The average particulate passage rate obtained in the present study was 1.9%/h where as the range of disappearance rates of various mineral elements were : 0.4 to 1.2%/h for Ca, 0.1 to 1.6%/h for P, 0.7 to 2%/h for Mg and 0.1 to 2%/h for K. The effective ruminal solubilization (ERS) of the macrominerals was calculated where particulate passage rate and disappearance rate of the various elements were included in the equation. The ERS of Ca, P, Mg and K was 50.0, 72.6, 83.9 and 94.5%, respectively. Species differences (p<0.05) on the various mineral solubilities were also observed. This study shows that ruminal solubility of macrominerals in selected Philippine forages is K > Mg > P > Ca.

The Effect of Bacteriocin Produced by Lactobacillus plantarum on the Growth of Listeria monocytogenes

  • Kim Sang-Hyun;Lee Jong-Gab;Lee Myung-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 1998
  • The inhibitory effect of Lactobacillus plantarum (Lb. plantarum) which is bacteriocin­producing strain against the growth of Listeria monocytogenes (L. monocytogenes) was examined in trypticase soy broth (TSB). TSB was inoculated with 104 cells/me L. monocytogenes and then with different numbers $(10^6\;10^4\;and\;10^2\;cells/ml)$ of Lb. plantarum. The mixed cultures were incubated at 37, 25 and $4^{\circ}C$. The most effective inhibition of was found at $37^{\circ}C$ and a less inhibition at $25^{\circ}C$. However, there was no significant change in the cell numbers of both L. monocytogenes and Lb. plantarum at $4^{\circ}C$. At same incubation temperature, the higher initial inoculum level of Lb. plantarum, the better inhibitory effect against L. monocytogenes. In addition, TSB was inoculated with L. monocytogenes at different initial inoculum levels of $10^6,\;10^4$ and $10^2$ cells/me and then supplemented with 0, 30, 60 and 100 AU/ml of bacteriocin produced by Lb. plantarum. The mixed cultures were incubated at 37, 25 and $4^{\circ}C$. L. monocytogenes of three different initial inoculum levels began to be inhibited in the presence of more than 60 AU/ml of bacteriocin at $37^{\circ}C$. In TSB containing more than 60 AU/me of bacteriocin and incubated at $25^{\circ}C$, L. monocytogenes decreased by 2 log-units during the period of 12 hrs incubation and thereafter remained steady. At $4^{\circ}C$, L. monocytogenes decreased by 1.5 log-units in the presence of 60 AU/ml bacteriocin during the period of 4 days incubation and dropped to the non-detectable level in TSB with 100 AU/ml bacteriocin.

  • PDF

Effects of Rice Straw Application on the Immobilization of Applied Nitrogen in a Submerged Soil (논 토양(土壤)에서 볏짚시용시(施用時) 시용질소(施用窒素)의 유기화(有機化)에 관(關)한 연구(硏究))

  • Lee, Sang-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.368-371
    • /
    • 1983
  • Energy rich rice straw was subjected to biological processes involving the transformation of added nitrogen. A part of soil ammonium nitrogen was steadily exhausted when energy rich rice straw was decomposed. More vigorous transformation of added nitrogen ocurred during the first 5 days of incubation period than after 10 days of incubation period. Furthermore, transformation of added nitrogen occurred more markedly when more rice straw and less nitrogen were added. Remineralization of immobilized nitrogen did not take place in this experiment with 50 days of incubation.

  • PDF

Inoculum Sources to Generate High Mechanical Transmission of Barley yellow mosaic virus

  • Jonson, Gilda;Kim, Yang-Kil;Kim, Mi-Jung;Park, Jong-Chul;Hyun, Jong-Nae;Kim, Jung-Gon
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.103-105
    • /
    • 2007
  • Mechanical transmission of barley seedlings with barley yellow mosaic virus (BaYMV) is generally inefficient and is the major constraint for testing cultivar resistance to the virus. To explore mechanical transmission, BaYMV-infected barley plants were grown at different conditions and used as inoculum sources to seedlings of susceptible barley cultivar Baegdong. Extracts prepared from BaYMV-infected Baegdong plants at 47, 53, 74, and 90 days after symptom appearance (DASA) and grown at 10 and $12^{\circ}C$ gave 10, 30, 68 and 76% infection, respectively on inoculated susceptible barley cv. Baegdong seedlings. While Jinyangbori, another susceptible cultivar obtained 95% infection rate inoculated with extracts from 90 DASA disease source and grown at $10/12^{\circ}C$. However, low infection rates were obtained when the virus sources were grown in a greenhouse at $15-18^{\circ}C$. Our results indicate that longer incubation period and lower temperature are required for virus accumulation and stability.

Production of Soluble Crude Protein Using Cellulolytic Fungi on Rice Stubble as Substrate under Waste Program Management

  • Vibha, Vibha;Sinha, Asha
    • Mycobiology
    • /
    • v.33 no.3
    • /
    • pp.147-149
    • /
    • 2005
  • The investigation was undertaken to enhance the decomposition process by pre-treatment of rice stubble, having higher concentration of lignin. Air-dried rice stubble was treated with 1.8 liter of 1% NaOH and autoclaved. Six cellulolytic fungi, Trichoderma harzianum, Penicillium citrinum, Curvularia lunata, Aspergillus flavus and Alternaria alternata were grown in basal synthetic medium along with delignified rice-residue as carbon source for production of soluble crude protein. Though the loss of cellulose has been observed by all of them but having a considerable status in the presence of T. harzianum and T. harzianum yielded highest percentage of crude protein (27.99%) with biomass of 375 mg, whereas the lowest protein value (17.91%) was recorded in case of A. niger with biomass of 422 mg. Among the imperfect fungi, T. harzianum was the most potent. Effects of incubation period and nitrogen sources on soluble crude protein production by T. harzianum were also undertaken in this study. Fifth day of incubation period and potassium nitrate as nitrogen source among other nitrogen sources was found most appropriate for soluble crude protein production by the mentioned organism.

The effects of oxygen on selective Si epitaxial growth using disilane ane hydrogen gas in low pressure chemical vapor deposition ($Si_2H_6$$H_2$ 가스를 이용한 LPCVD내에서의 선택적 Si 에피텍시 성장에 미치는 산소의 영향)

  • 손용훈;박성계;김상훈;이웅렬;남승의;김형준
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2002
  • Selective epitaxial growth(SEG) of silicon were performed at low temperature under an ultraclean environment below $1000^{\circ}C$ using ultraclean $Si_2H_6$ and $H_2$ gases ambient in low pressure chemical vapor deposition(LPCVD). As a result of ultraclean processing, epitaxial Si layers with good quality were obtained for uniform and SEG wafer at temperatures range 600~$710^{\circ}C$ and an incubation period of Si deposition only on $SiO_2$ was found. Low-temperature Si selectivity deposition condition and epitaxy on Si were achieved without addition of HCl. The epitaxial layer was found to be thicker than the poly layer deposited over the oxide. Incubation period prolonged for 20~30 sec can be obtained by $O_2$addition. The surface morphologies & cross sections of the deposited films were observed with SEM, The structure of the Si films was evaluated XRD.

Monitoring of petroleum hydrocarbon degradative potential of indigenous microorganisms in ozonated soil

  • ;;Rameshwar;Tatavarty
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.152-157
    • /
    • 2003
  • Diesel-contaminated soils were ozonated for different times (0 - 900 min) and incubated for 9 wk to monitor petroleum hydrocarbons (PH)-degradative potential of indigenous microorganisms in the soils. Increased ozonation time decreased not only concentration of PH but also number of microorganisms in the soils. Microorganisms in the ozonated soils increased during 9-wk incubation as monitored by culture- and nonculture-based methods. Higher (1-2 orders of magnitude) cell number was observed by quantitative analysis of soil DNA using probes detecting genes encoding 165 rRNA(rrn), naphthalene dioxygenase (nahA), toluene dioxygenase (todC), and alkane hydroxylase (alkB) than microbial abundance estimated by culture-based methods. Such PH-degraders were relatively a few or under detection limit in 900-min ozonated soil. Further PH-removal observed during the incubation period supported the presence of PH-degraders in ozonated soils. Highest reduction (25.4%) of total PH (TPH) was observed in 180-min ozonated soil white negligible reduction was shown in 900-min ozonated soil during the period, resulting in lowest TPH-concentration in 180-min ozonated soil among the ozonated soils. Microbial community composition in 9-wk incubated soils revealed slight difference between 900-min ozonated and unozonated soils as analyzed by whole cell hybridization using group-specific rRNA-targeted oligonucleotides. Results of this study suggest that appropriate ozonation and subsequent biodegradation by indigenous microorganisms may be a cost-effective and successful remediation strategy for PH-contaminated soils.

  • PDF