• Title/Summary/Keyword: Incubation period

Search Result 697, Processing Time 0.032 seconds

Persistence of Fungicide Pencycuron in Soils (토양 중 살균제 Pencycuron의 잔류 특성)

  • An, Xue-Hua;An, Wen-Hao;Im, Il-Bin;Lee, Sang-Bok;Kang, Jong-Gook
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.296-305
    • /
    • 2006
  • The adsorption and persistence of pencycuron {1-(4-chlorobenzyl) cyclopentyl-3-phenylurea} in soils were investigated under laboratory and field conditions to in order to assess the safety use and environmental impact. In the adsorption rate experiments, a significant power function of relation was found between the adsorbed amount of pencycuron and the shaking time. Within one hour following the shaking, the adsorption amounts in the SCL and the SiCL were 60 and 65% of the maximum adsorption amounts, respectively. The adsorption reached a quasi-equilibrium 12 hours after shaking. The adsorption isotherms followed the Freundlich equation. The coefficient (1/n) indicating adsorption strength and degree of nonlinearity was 1.45 for SCL and 1.68 to SiCL. The adsorption coefficients ($K_d$) were 2.31 for SCL and 2.92 to SiCL, and the organic carbon partition coefficient, $K_{oc}$, was 292.9 in SCL and 200.5 inSiCL. In the laboratory study, the degradation rate of pencycuron in soils followed a first-order kinetic model. The degradation rate was greatly affected by soil temperature. As soil incubation temperature was increased from 12 to $28^{\circ}C$, the residual half life was decreased from 95 to 20 days. Arrhenius activation energy was 57.8 kJ $mol^{-1}$. Furthermore, the soil moisture content affected the degradation rate. The half life in soil with 30 to 70% of field moisture capacity was ranged from 21 to 38 days. The moisture dependence coefficient, B value in the empirical equation was 0.65. In field experiments, the half-life were 26 and 23 days, respectively. The duration for period of 90% degradation was 57 days. The difference between SCL and SiCL soils varied to pencycuron degradation rates were very limited, particularly under the field conditions, even though the characteristics of both soils are varied.

Inhibitory Effect on Infection of Plant Viruses by Filtrate Powder from Culture Broth of Acinetobacter sp. and Its Mode of Action (Acinetobacter sp. 배양여과액 분말제제의 식물바이러스에 대한 감염억제 효과 및 작용)

  • Kim Mi-Soon;Jung Min-Young;Kim Yun-Sung;Jang Cheol;Hwang In-Cheon;Ryu Ki-Hyun;Choi Jang-Kyung
    • Research in Plant Disease
    • /
    • v.12 no.2
    • /
    • pp.91-98
    • /
    • 2006
  • A filtrate powder, designated as KNF2022, produced from culture broth of Acinetobacter sp. KTB3 was tested for their inhibitory effects on Pepper mild mottle virus (PMMoV) infection to Nicotiana glutinosa or N. tabacum cv. Xanthi nc. When 1/100 dilution with distilled water was treated to the plants and PMMoV was inoculated, the inhibition was estimated to be 94.3 and 95.6%, respectively. The same concentrations of KNF2022 inhibited infections of Pepper mottle virus (PepMoV) and Cucumber mosaic virus (CMV) on Chenopodium amaranticolor by 97.1 and 92.5%, respectively. Duration of inhibitory activity of the filtrate powder from Acinetobacter sp. culture broth against PMMoV infection on N. glutinosa was maintained for 2 days at 80% inhibition level, however, the inhibitory effect was diminished from 4 days after treatment to 50% levels. To evaluate inhibitory effects on systemic host plants of the antiviral agent, symptom developments of PMMoV, PepMoV and CMV on KNF2022-treated pepper plants were investigated. Delayed symptom developments until 10 days after inoculation (DAI) were observed for all the three viruses when the viruses were inoculated individually, and these delayed symptom development effects were maintained until 30 DAI in case of PepMoV. Moreover, PepMoV was not detected by RT-PCR and ELISA until 30 DAI. These delayed symptom development effects were diminished in all combinations of three virus co-inoculations due to synergism of three viruses on symptom developments. Inhibitory effect of KNF2022 was verified under electron microscopic examinations using purified virus preparations. Particles of PMMoV and PepMoV were observed on specimens from 5 min after KNF2022 treatment, and the particle sizes were reached in the range of 200-250 nm and 400-600 nm, respectively. Furthermore, the viral particles were destructed and particle sizes were reached in the range of 100-150 nm and 300-500 nm, respectively, on 60 min after treatments. Reduction of local lesion numbers on N. tabacum cv. Xanthi nc and C. amaranticolor were accompanied with reduction of virus particle sizes. In the case of CMV destructed particle numbers were also increased according to incubation period after KNF2022 treatment and local lesions on C. amaranticolor were reduced.

Combined Effects of Filter-feeding Bivalve and Zooplankton on the Growth Inhibition of Cyanobacterium Microcystis aeruginosa (남세균 제어를 위한 동물플랑크톤(Daphnia magna)과 패류(Unio douglasiae)의 단독 및 혼합적용)

  • Kim, Nan-Young;Park, Myung-Hwan;Hwang, Su-Ok;Kim, Baik-Ho;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.108-114
    • /
    • 2015
  • Single - and combined effects of a domestic freshwater bivalve Unio douglasiae (7.6~8.6 cm in shell length) and zooplankton Daphnia magna (1~2 mm in body size) were examined to understand whether they inhibit the growth of harmful cyanobacterial bloom (i.e. Microcystis aeruginosa) in a eutrophic lake. The experiments were triplicated with twelve glass aquaria (40 L in volume); three aquaria without mussel and zooplankton, served as a control, three zooplankton aquaria (Z, density=40 indiv. $L^{-1}$), three mussel aquaria (M, density=0.5 indiv. $L^{-1}$), and three mussel plus zooplankton aquarium (ZM, density=40 indiv.Z $L^{-1}$ plus 0.5 indiv.M/L), respectively. Algal growth inhibition (%) calculated as a difference in the concentration of chlorophyll-a (Chl-a) before and after treatment. Chl-a in all aquaria decreased with the time, while a greatest algal inhibition was seen in the ZM aquaria. After 24 hrs of incubation, Chl-a concentration at the mid-depth (ca. 15 cm) in ZM aquaria reduced by 90.8% of the control, while 63.2% and 79.8% in Z and M aquaria, respectively. Interestingly, during the same period, the surface Chl-a was diminished by 51.9% and 65.4% relative to the control in Z and ZM aquaria, while 27.4% of initial concentration decreased in M aquarium, respectively. These results suggest that 1) this domestic freshwater filter-feeding bivalve plays a significant role in the control of cyanobacterial bloom (M. aeruginosa), and 2) the combination with zooplankton and mussel has a synergistic effect to diminish them, compared to the single treatment of zooplankton and mussel.

Development of Efficient Screening Methods for Melon Plants Resistant to Fusarium oxysporum f. sp. melonis (멜론 덩굴쪼김병에 대한 효율적인 저항성 검정법 개발)

  • Lee, Won Jeong;Lee, Ji Hyun;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Heung Tae;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.70-82
    • /
    • 2015
  • This study was conducted to establish an efficient screening system to identify melon resistant to Fusarium oxysporum f. sp. melonis. F. oyxsporum f. sp. melonis GR was isolated from infected melon plants collected at Goryeong and identified as F. oxysporum f. sp. melonis based on morphological characteristics, molecular analyses, and host-specificity tests on cucurbits including melon, oriental melon, cucumber, and watermelon. In addition, the GR isolate was determined as race 1 based on resistance responses of melon differentials to the fungus. To select optimized medium for mass production of inoculum of F. oxysporum f. sp. melonis GR, six media were tested. The fungus produced the most spores (microconidia) in V8-juice broth. Resistance degrees to the GR isolate of 22 commercial melon cultivars and 6 rootstocks for melon plants were investigated. All tested rootstocks showed no symptoms of Fusarium wilt. Among the tested melon cultivars, only three cultivars were susceptible and the other cultivars displayed moderate to high resistance to the GR isolate. For further study, six melon cultivars (Redqueen, Summercool, Superseji, Asiapapaya, Eolukpapaya, and Asiahwanggeum) showing different degrees of resistance to the fungus were selected. The development of Fusarium wilt on the cultivars was tested according to several conditions such as plant growth stage, root wounding, dipping period of roots in spore suspension, inoculum concentration, and incubation temperature to develop the disease. On the basis of the test results, we suggest that an efficient screening method for melon plants resistant to F. oxysporum f. sp. melonis is to remove soil from roots of seven-day-old melon seedlings, to dip the seedlings without cutting in s pore s uspension of $3{\times}10^5conidia/mL$ for 30 min, to transplant the inoculated seedlings to plastic pots with horticulture nursery media, and then to cultivate the plants in a growth room at 25 to $28^{\circ}C$ for about 3 weeks with 12-hour light per day.

Detection of Auxotrophic Mutants form Valsa ceratosperma, the Causal Fungus of Apple Canker (사과나무 부란병균(腐爛病菌) Valsa ceratosperma에서의 Auxotrophic Mutants의 검출(檢出))

  • Hong, Yeon Gyu;Uhm, Jae Youl
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.119-126
    • /
    • 1987
  • This study was conducted to elucidate the most appropriate method to obtain auxotrophic mutants from Valsa ceratosperma, the causal fungus of apple canker, which may be used as a gene marker in detecting the transfer of the factors of avirulent strains to virulent strains. Among the 3 kinds of synthetic media tested, each have two formula for minimal and complete, the medium which has been used in study of Endothia parasitica (E. P medium) was turned out to be most appropriate for the growth of V. ceratosperma. A medium for single colony formation from pycnidiospore of this fungus was developed by adding 0.5% L - sorbose to the E. P minimal medium. The period of incubation in dark for preventing the photoreactivation after U. V irradiation was estimated as about 60hrs at which most of the spores become binucleate. Largest number of putative auxotrophs were obtained at about 50second of irradiation to the spores smeared on the medium for single colony formation, at which the survival rate of spores was 5 to 6 percent. With these method developed in this experiment, 161 isolates of putative auxotrophs were detected among which the nutrient requirement for 10 isolates were determined. Five out of 10 mutants were still virulent to apple tree and all but one could not sporulate.

  • PDF

The influence of herbicides on soil microflora -Influence of butachlor- (제초제(除草劑)가 토양미생물(土壤微生物) Flora에 미치는 영향 - Butachlor 제(第)의 영향 -)

  • Kim, Jung Je;Jung, Hyeon Sig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.1
    • /
    • pp.25-31
    • /
    • 1976
  • The purpose of this investigation is to find out the effects on the changes of microflora and the effects on the inorganic nutrients of the fertilized soil and the non-fertilized soil under submerged condition with the treatment of butachlor at the levels of 250, 500, and 1000ppm respectively. The survey was made within the period of 72 days with 7-day intervals under the incubated condition. The result came out to be the following: 1. The Fluctuated changes of soil microflora A. Bacteria: The plots treated by 500ppm of butachlor in case of non-fertilized soil showed the decreasing tendency of bacteria until 21st day. But there were no effects on the other plots. The plots treated by 250ppm and 500ppm in case of fertilized soil showed decreasing tendency on the 7th day, and 1000ppm until 21st days. B. Actinomycetes: There was no effects on the actinotnycetes in case of the non-fertilized soil but the fertilized soil showed some decrease. In both cases, actinomycetes have generally shown a little increase according to the time passage. C. Fungi: In both cases of the fertilized soil and the non-fertilized soil, the plots treated by the media showed some decreasing tendency in comparison with the control plots. There was no change to the number of fungi according to the time passage. 2. The fluctuated changes of nutrient A. $NH_4-N$: The whole plots showed decrease of $NH_4-N$ by adding butachlor. The higher the intencity of butachiar showed the more decreasing tendency of $NH_4-N$. In case of the non-fertilized soil, the highest increase of $NH_4-N$ appeared from the 7th day to 14th day, but showed degrease thereafter. The increasing tendency was seen in case of the fertilized soil plots. B. $NO_3-N$: Decrease of $NO_3-N$ was shown in the whole plots by the treatment of media, and on the 44th day of cultivation almost none of $NO_3-N$ was detected. C. $NO_2-N$: Whole plots showed the number of $NO_2-N$ highest on the 35th day, and there were nothing measurable on the 44th day. D. Eh: On the fertilized soil, the condition of reduction went on strongly but on the non-fertilized soil, the condition of reduction kept on till 42nd day and oxidation appeared thereafter.

  • PDF

Forecasting Leaf Mold and Gray Leaf Spot Incidence in Tomato and Fungicide Spray Scheduling (토마토 재배에서 점무늬병 및 잎곰팡이병 발생 예측 및 방제력 연구)

  • Lee, Mun Haeng
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.376-383
    • /
    • 2022
  • The current study, which consisted of two independent studies (laboratory and greenhouse), was carried out to project the hypothesis fungi-spray scheduling for leaf mold and gray leaf spot in tomato, as well as to evaluate the effect of temperature and leaf wet duration on the effectiveness of different fungicides against these diseases. In the first experiment, tomato leaves were infected with 1 × 104 conidia·mL-1 and put in a dew chamber for 0 to 18 hours at 10 to 25℃ (Fulvia fulva) and 10 to 30℃ (Stemphylium lycopersici). In farm study, tomato plants were treated for 240 hours with diluted (1,000 times) 30% trimidazole, 50% polyoxin B, and 40% iminoctadine tris (Belkut) for protection of leaf mold, and 10% etridiazole + 55% thiophanate-methyl (Gajiran), and 15% tribasic copper sulfate (Sebinna) for protection of gray leaf spot. In laboratory test, leaf condensation on the leaves of tomato plants were emerged after 9 hrs. of incubation. In conclusion, the incidence degree of leaf mold and gray leaf spot disease on tomato plants shows that it is very closely related to formation of leaf condensation, therefore the incidence of leaf mold was greater at 20 and 15℃, while 25 and 20℃ enhanced the incidence of gray leaf spot. The incidence of leaf mold and gray leaf spot developed 20 days after inoculation, and the latency period was estimated to be 14-15 days. Trihumin fungicide had the maximum effectiveness up to 168 hours of fungicides at 12 hours of wet duration in leaf mold, whereas Gajiran fungicide had the highest control (93%) against gray leaf spot up to 144 hours. All the chemicals showed an around 30-50% decrease in effectiveness after 240 hours of treatment. The model predictions in present study could be help in timely, effective and ecofriendly management of leaf mold disease in tomato.