• Title/Summary/Keyword: Incremental finite element analysis

Search Result 249, Processing Time 0.026 seconds

Seismic performance of RC frame having low strength concrete: Experimental and numerical studies

  • Rizwan, Muhammad;Ahmad, Naveed;Khan, Akhtar Naeem
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.75-89
    • /
    • 2019
  • The paper presents experimental and numerical studies carried out on low-rise RC frames, typically found in developing countries. Shake table tests were conducted on 1:3 reduced scaled two-story RC frames that included a code conforming SMRF model and another non-compliant model. The later was similar to the code conforming model, except, it was prepared in concrete having strength 33% lower than the design specified, which is commonly found in the region. The models were tested on shake table, through multiple excitations, using acceleration time history of 1994 Northridge earthquake, which was linearly scaled for multi-levels excitations in order to study the structures' damage mechanism and measure the structural response. A representative numerical model was prepared in finite element based program SeismoStruct, simulating the observed local damage mechanisms (bar-slip and joint shear hinging), for seismic analysis of RC frames having weaker beam-column joints. A suite of spectrum compatible acceleration records was obtained from PEER for incremental dynamic analysis of considered RC frames. The seismic performance of considered RC frames was quantified in terms of seismic response parameters (seismic response modification, overstrength and displacement amplification factors), for critical comparison.

Fault detection and classification of permanent magnet synchronous machine using signal injection

  • Kim, Inhwan;Lee, Younghun;Oh, Jaewook;Kim, Namsu
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.785-790
    • /
    • 2022
  • Condition monitoring of permanent magnet synchronous motors (PMSMs) and detecting faults such as eccentricity and demagnetization are essential for ensuring system reliability. Motor current signal analysis is the most commonly used precursor for detecting faults in the PMSM drive system. However, the current signature responds sensitively to the load and temperature of the motor, thereby making it difficult to monitor faults in real- applications. Therefore, in this study, a condition monitoring methodology that detects motor faults, including their classification with standstill conditions, is proposed. The objective is to detect and classify faults of PMSMs by using programmable inverter without additional sensors and systems for detection. Both DC and AC were applied through the d-axis of a three-phase motor, and the change in incremental inductance was investigated to detect and classify faults. Simulation with finite element analysis and experiments were performed on PMSMs in healthy conditions as well as with eccentricity and demagnetization faults. Based on the results obtained from experiments, the proposed method was confirmed to detect and classify types of faults, including their severity.

Nonlinear Analysis of Nuclear Reinforced Concrete Containment Structures under Accidental Thermal Load and Pressure (온도 및 내압을 받는 원자로 철근콘크리트 격납구조물의 비선형해석)

  • Oh, Byung Hwan;Lee, Myung Gue
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.403-414
    • /
    • 1994
  • Nonlinear analysis of RC containment structure under thermal load and pressure is presented to trace the behaviour after an assumed LOCA. The temperature distribution varying with time through the wall thickness is determined by transient finite element analysis with the two time level scheme in time domain. The layered shell finite elements are used to represent the containment structures in nuclear power plants. Both geometric and material nonlinearities are taken into account in the finite element formulation. The constitutive relation of concrete is modeled according to Drucker-Prager yield criteria in compression. Tension stiffening model is used to represent the tensile behaviour of concrete including bond effect. The reinforcing bars are modeled by smeared layer at the location of reinforcements accounting elasto-plastic axial behaviors. The steel liner model under Von Mises yield criteria is adopted to represent elastic-perfect plastic behaviour. Geometric nonlinearity is formulated to consider the large displacement effect. Thermal stress components are determined by the initial strain concept during each time step. The temperature differential between any two consecutive time steps is considered as a load incremental. The numerical results from this study reveal that nonlinear temperature gradient based on transient thermal analysis will produces excessive large displacement. Nonlinear behavior of containment structures up to ultimate stage can be traced reallistically. The present study allows more realistic analysis of concrete containment structures in nuclear power plants.

  • PDF

Effect of Stent Design Porosity on Hemodynamics Within Cerebral Aneurysm Model: Numerical Analysis (스텐트 공극률의 뇌동맥류 모델 내부 유동장 영향 수치해석)

  • Phan, Dai Thanh;Lee, Sang-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.63-70
    • /
    • 2014
  • In the present study, CFD simulations were conducted for investigating intra-aneurysmal flow characteristics with different stent porosities ($C_{\alpha}$ = 80%, 74%, and 64%), and the simulation results were compared with experimental data. Using a quadratic tetrahedral element-based finite element scheme, we estimated velocity fields and wall shear stress. The intra-aneurysmal velocity reduction ratios obtained via simulation agree well with published experimental data. It was found that a stent with a porosity of 80%, which is highest in the present study, is able to effectively reduce flow into the aneurysm, which causes intra-aneurysmal stasis, and that stents with lower porosities afford only incremental benefits in reducing inflow to an aneurysm.

A Study on the Load Capacity Characteristics of the Externally Pressurized Air Lubricated Journal Bearings (외압을 받는 공기윤활 저어널 베어링의 부하특성에 관한 연구)

  • 김수태;조강래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.231-240
    • /
    • 1988
  • An investigation is carried out for the load capacity characteristics of the externally pressurized air lubricated journal bearings both theoretically and experimentally. Theoretical analysis is made using the incremental method and the finite element method, and the discharge coefficient is considered. The experiments are performed for five bearings which are produced according to the rows of supply holes and the presence of poket or step. The results are compared with the numerical results. The present numerical results are in better agreement with the available experimental results than any other earlier numerical results for the bearings having one row and two rows of supply holes with pocket. The present numerical and experimental results show that the bearing with step has larger load capacity than that without step and that the load capacity increases as the clearance ratio increases.

Micromechanical Superplastic Model for the Analysis of Inhomogeneous Deformation in Heterogeneous Microstructure (비균일 조직에 따른 불균일 변형 해석을 위한 미시역학적 초소성 모텔)

  • Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1933-1943
    • /
    • 2001
  • A micromechanical model is presented for superplasticity in which heterogeneous microstructures are coupled with deformation behavior. The effects of initial distributions of grain size, and their evolutions on the mechanical properties can be predicted by the model. Alternative stress rate models such as Jaumann rate and rotation incremental rate have been employed to analyze uniaxial loading and simple shear problems and the appropriate modeling was studied on the basis of hypoelasticity and elasto-viscoplasticity. The model has been implemented into finite element software so that full process simulation can be carried out. Tests have been conducted on Ti-6Al-4V alloy and the microstructural features such as grain size, distributions of grain size, and volume fraction of each phase were examined for the materials that were tested at different strain rates. The experimentally observed stress-strain behavior on a range of initial grain size distributions has been shown to be correctly predicted. In addition, the effect of volume fraction of the phases and concurrent grain growth were analyzed. The dependence of failure strain on strain rate has been explained in terms of the change in mechanism of grain growth that occurs with changing strain rate.

Adjustment of Roll Gap for The Dimension Accuracy of Bar in Hot Bar Rolling Process (열간 선재 압연제품의 치수정밀도 향상을 위한 롤 갭 조정)

  • Kim, Dong-Hwan;Kim, Byung-Min;Lee, Young-Seog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.96-103
    • /
    • 2002
  • The objective of this study is to adjust the roll gap fur the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes fur round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental from and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

Adjustment of Roll Gap for the Dimension Accuracy of Bar in Hot Bar Rolling Process

  • Kim, Dong-Hwan;Kim, Byung-Min;Lee, Youngseog
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.56-62
    • /
    • 2003
  • The objective of this study is to adjust the roll gap for the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes for round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

Development of Technique Predicting of the Wear of DCI Roll Using Carbon Steel in Hot Rod Rolling Process (탄소강 선재 압연공정의 DCI 롤 마멸 예측 기술의 개발)

  • Kim, Dong-Hwan;Kim, Byeong-Min;Lee, Yeong-Seok;Yu, Seon-Jun;Ju, Ung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1736-1745
    • /
    • 2002
  • The objective of this study is to predict the roll wear in hot rod rolling process. In this study hot rod rolling process for round and oval passes has been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the thermal softening of DCI (Ductile Cast Iron) roll according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering parameter curve. 3D wear program developed in this study might be used for adjusting the gap of rolls to set up a suitable rolling schedule for keeping dimensional tolerance of the product.

Adjustment Of Roll Gap For The Dimension Accuracy Of Bar In Hot Bar Rolling Process (열간 선재 압연제품의 치수정밀도 향상을 위한 롤 갭 조정)

  • 김동환;김병민;이영석;유선준;주웅용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1036-1041
    • /
    • 1997
  • The objective of this study is to adjust the roll gap for the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes for round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

  • PDF