• Title/Summary/Keyword: Incremental finite element analysis

Search Result 249, Processing Time 0.024 seconds

The influence of various core designs on stress distribution in the veneered zirconia crown: a finite element analysis study

  • Ha, Seung-Ryong;Kim, Sung-Hun;Han, Jung-Suk;Yoo, Seung-Hyun;Jeong, Se-Chul;Lee, Jai-Bong;Yeo, In-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.187-197
    • /
    • 2013
  • PURPOSE. The purpose of this study was to evaluate various core designs on stress distribution within zirconia crowns. MATERIALS AND METHODS. Three-dimensional finite element models, representing mandibular molars, comprising a prepared tooth, cement layer, zirconia core, and veneer porcelain were designed by computer software. The shoulder (1 mm in width) variations in core were incremental increases of 1 mm, 2 mm and 3 mm in proximal and lingual height, and buccal height respectively. To simulate masticatory force, loads of 280 N were applied from three directions (vertical, at a $45^{\circ}$ angle, and horizontal). To simulate maximum bite force, a load of 700 N was applied vertically to the crowns. Maximum principal stress (MPS) was determined for each model, loading condition, and position. RESULTS. In the maximum bite force simulation test, the MPSs on all crowns observed around the shoulder region and loading points. The compressive stresses were located in the shoulder region of the veneer-zirconia interface and at the occlusal region. In the test simulating masticatory force, the MPS was concentrated around the loading points, and the compressive stresses were located at the 3 mm height lingual shoulder region, when the load was applied horizontally. MPS increased in the shoulder region as the shoulder height increased. CONCLUSION. This study suggested that reinforced shoulder play an essential role in the success of the zirconia restoration, and veneer fracture due to occlusal loading can be prevented by proper core design, such as shoulder.

Dynamic Response Analysis of Bridge-AGT Vehicle Interaction System (교량-AGT 차량 상호작용에 의한 교량의 동적응답)

  • Kim, Hyun-Ho;Rha, Sang-Ju;Song, Jae-Pil
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.561-568
    • /
    • 2006
  • Dynamic equations of motion for the interaction system of bridge and vehicle are derived to investigate the dynamic responses of bridge and vehicles induced by moving automated guide-way transit(AGT) vehicle and surface roughness of bridge. The vehicle model for ACT vehicle is idealized as 11 DOF including yawing, lateral translation and steering of wheels, and the bridges are modeled with finite element method. The AGT vehicle model was verified by experimental study. Parametric studies are carried out to investigate the effect of vehicle speed, surface roughness, stiffness and damping of the suspension system, AGT vehicles and dynamic wheel loads of the AGT vehicles. From the parametric study it can be seen that the dynamic incremental factor of the bridge and dynamic responses of vehicles have a tendency to increase with vehicle speeds, surface roughness and the stiffness of AGT vehicle suspension system. On the other hand those dynamic wheel loads have tendencies to decrease in according to increase of damping of the suspension system.

Thermal load analysis in an incompressible linear visco-elastic cylinder bonded to an elastic shell (非壓縮 粘彈性 圓筒體의 熱荷重 解析)

  • 이영신;최용규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.205-213
    • /
    • 1987
  • A linear thermoviscoelastic material model, whose basis is on incremental constitutive equation that takes complete strain and temperature histories into account, is derived and computerized in the finite element code. The thermoviscoelastic F.E.M. code which is intended primarily to analyze the cylinder model during the cool-down period, embodies the assumption of linearly elastic bulk and visco-elastic shear responses, thermo-rheologically simple response to temperature change and isotropic thermal expansion. The verification of computer program is accomplished by first testing it against a closed form solution of A.M. Freudenthal & M. Shinozuka's. The stress and strain analyses of five cylindrical models are presented and compared with experimental results. Analytical results are good agreement with experimental results. Margins of safety are evaluated and its allowable ranges are presented.

Stress and Strain Distribution of Thick Composites with Various Types of Fiber Waviness under Tensile and Compressive Loadings (다양한 형태의 보강섬유 굴곡을 가지는 두꺼운 복합재료의 인장/압축 하중 하에서의 응력/변형률 분포)

  • 신재윤;이승우;전흥재
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.97-100
    • /
    • 2000
  • A FEA(finite element analysis) model was proposed to study stress and strain distributions in thick composites with various types of fiber waviness under tensile and compressive loadings. Three types of model were considered in this study: uniform fiber waviness, graded fiber waviness and localized fiber waviness models. In the analysis, both material and geometrical nonlinearities due to fiber waviness were incorporated into the model utilizing energy density and incremental method. The strain distributions of uniform fiber waviness model were strongly influenced whereas the stress distributions were little influenced by fiber waviness. The stress and strain distributions of graded and localized fiber waviness models showed more complex distributions than those of uniform fiber waviness model due to the variation of fiber waviness along the thickness and length directions. It was concluded that the stress and strain distributions of composites with fiber waviness were significantly affected by types of fiber waviness.

  • PDF

Analysis of slender structural elements under unilateral contact constraints

  • Silveira, Ricardo Azoubel Da Mota;Goncalves, Paulo Batista
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.35-50
    • /
    • 2001
  • A numerical methodology is presented in this paper for the geometrically non-linear analysis of slender uni-dimensional structural elements under unilateral contact constraints. The finite element method together with an updated Lagrangian formulation is used to study the structural system. The unilateral constraints are imposed by tensionless supports or foundations. At each load step, in order to obtain the contact regions, the equilibrium equations are linearized and the contact problem is treated directly as a minimisation problem with inequality constraints, resulting in a linear complementarity problem (LCP). After the resulting LCP is solved by Lemke's pivoting algorithm, the contact regions are identified and the Newton-Raphson method is used together with path following methods to obtain the new contact forces and equilibrium configurations. The proposed methodology is illustrated by two examples and the results are compared with numerical and experimental results found in literature.

Improved refined plastic hinge analysis accounting for local buckling and lateral-torsional buckling

  • Thai, Huu-Tai;Kim, Seung-Eock;Kim, Jongmin
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.339-349
    • /
    • 2017
  • In this paper, a conventional refined plastic hinge analysis is improved to account for the effects of local buckling and lateral-torsional buckling. The degradation of flexural strength caused by these effects is implicitly considered using practical LRFD equation. The second-order effect is captured using stability functions to minimize modeling and solution time. An incremental-iterative scheme based on the generalized displacement control method is employed to solve the nonlinear equilibrium equations. A computer program is developed to predict the second-order inelastic behavior of space steel frames. To verify the accuracy and efficiency of the proposed program, the obtained results are compared with the existing results and those generated using the commercial finite element package ABAQUS. It can be concluded that the proposed program proves to be a reliable and effective tool for daily use in engineering design.

A Study on the Stress Concentration Phenomenon of a Dissimilar Joints (이종재 접합부에서의 응력집중현상에 관한 연구)

  • 조상명;김영식
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 1992
  • In this study, the stress concentration phenomenon for the dissimilar joints(ceramic-metal) bonded by thermal treating using a soft-insert metal(copper) was investigated with the aid of FEM(finite element method) under the load condition of uniform tension. The analysis was carried out by the supposing that stress states are plane stress or plane strain and elastic or elastic-plastic. And the Von Mises yield criterion and the incremental theory as plastic flow were adopted in this analysis. As the summarized results obtained, the stress concentration phenomenon was severer as the soft insert metal was thicker, in plane strain than in plane stress and in elastic-plastic state than in elastic state. Furthermore, the inducing mechanism of stress concentration was well expressed by the constraint forces(Fc) generated between the soft and the hard material.

  • PDF

A Study on the Optimal Initial Stress-Finding of Structures Stabilized by Cable-Tension (장력안정 구조물의 최적초기응력 탐색에 관한 연구)

  • 최옥훈;한상을;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.287-294
    • /
    • 1999
  • The tensegrity structure by prestressed cable, which may have large freedom in scale and form and therefore are received much attention from the view points of their light weight and aesthetics, is a very flexible and geometrically unstable structure because the cable material has little initial rigidity. For the stable self-equilibrated state of the usually very deformable structure, the method to find the optimal initial stress by the shape analysis is proposed in this paper. The proposed procedure is to derive the nonlinear finite element formula of cable and truss members considering geometric nonlinearity and used to modified load incremental method adding to Newton-Raphson method with the proposed condition for optimal initial stress. The result of the shape analysis for the tensegrity structure with the radius of 30m is shown the almost approximated shape to architectural shape and the changed procedure of initial stress

  • PDF

Geometrically nonlinear analysis of thin-walled open-section composite beams

  • Vo, Thuc Phuong;Lee, Jae-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.113-118
    • /
    • 2008
  • This paper presents a flexural-torsional analysis of thin-walled open-section composite beams. A general geometrically nonlinear model for thin-walled composite beams and general laminate stacking sequences is given by using systematic variational formulation based on the classical lamination theory. The nonlinear algebraic equations of present theory are linearized and solved by means of an incremental Newton-Raphson method. Based on the analytical model, a displacement-based one-dimensional finite element model is developed to formulate the problem. Numerical results are obtained for thin-walled composite beams under general loadings, addressing the effects of fiber angle, laminate stacking sequence and loading parameters.

  • PDF

The study of inductance calculation and measurement through re-definition of inductances in PM type electric machines (영구자석 전동기에서 인덕턴스 재정의를 통한 인덕턴스 산정과 측정에 대한 연구)

  • Lee, Ji-Young;Kang, Do-Hyun;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.855-856
    • /
    • 2006
  • Inductance can be defined as several kinds of slops on the B-H curve, and at is classified into apparent, effective, incremental inductances, etc. In many research cases, its calculation and measurement are partially dealt. However it is hard to find the clear explanation of the inductance in the voltage equation of PM machines, and even its relationship with those classified inductances in the view point of design and characteristics analysis. Moreover some previous definition of inductance can not be used for the inductance of coils in PM machines. Therefore, in this paper the inductance is redefined for voltage equation of PM machines, and the methods of calculation by using finite element analysis method and measurement are explained.

  • PDF