This paper introduces the concept of fixed weights and proposes an algorithm for classification by adding this concept to vector space separation method in LVQ. The proposed algorithm is based on competitive learning. It uses fixed weightsfor generality and fast adaptation efficient radius for new weight creation, and L1 distance for fast calcualtion. It can be applied to many fields requiring adaptive learning with the support of generality, real-tiem processing and sufficient training effect using smaller data set. Recognition rate of over 98% for the train set and 94% for the test set was obtained by applying the suggested algorithm to on-line handwritten recognition.
This paper presents a new open-world object detection method emphasizing uncertainty representation in machine learning models. The focus is on adapting to real-world uncertainties, incrementally updating the model's knowledge repository for dynamic scenarios. Applications like autonomous vehicles benefit from improved multi-class classification accuracy. The paper reviews challenges in existing methodologies, stressing the need for universal detectors capable of handling unknown classes. Future directions propose collaboration, integration of language models, to improve the adaptability and applicability of open-world object detection.
중첩형 일반화 사례 (NGE, Nested Generalized Exemplar) 기법은 거리 기반 분류를 최적 일치 규칙으로 사용하며, 노이즈에 대한 내구력을 증가시켜 주는 동시에 모델 크기를 감소시키는 장점이 있다. NGE 학습 중 생성된 교차(cross)나 중첩(overlap) 현상은 분류성능을 저해하는 요인으로 작용한다. 따라서 본 논문은 NGE 학습 중 생성된 교차나 중첩 현상이 발생한 초월 평면에대해 상호정보가 가장 큰 구간을 분리하여, 새로운 초월평면을 구성하게 하여, 분류성능 향상시키고 초월평면의 개수를 감소시키는 기법인 DHGen(Dominant Hyperrectangle Generation) 알고리즘을 제안하였다. 제안한 DHGen은 분류성능면에서 kNN과 유사하고 NGE이론으로 구현한 EACH보다 우수함을 UCI Machine Learning Repository에서 벤치마크데이터를 발췌한 실험자료로 입증하였다.
다양한 전자전 상황에서 단위 위협체에 대하여 전자전 모델링과 시뮬레이션을 수행할 수 있는 통합 전자전 시뮬레이터의 개발 필요성이 대두되고 있다. 본 논문에서는 전자전 상황에서 전자정보 수집신호의 변수를 기반으로 전자파 신호를 발산하는 레이더 위협을 역추정하기 위한 시뮬레이션 시스템의 구성요소를 분석하고, 역추정 모델을 점진적으로 유지할 수 있는 방법을 제안한다. 또한, 실험을 통하여 점진적 역추정 모델 갱신 기법의 유효성 및 개별 역추정 결과의 통합 기법을 평가한다. 개별 역추정 모델의 생성을 위하여 의사결정트리, 베이지안 분류기, 인공신경망 및 유클리디안 거리 측정방식과 코사인 유사도 측정방식을 활용하는 군집화 알고리즘을 이용하였다. 첫 번째 실험에서 레이더 위협체에 대한 역추정 모델을 구축하기 위한 위협 예제의 크기를 점진적으로 증가시키면 역추정 모델의 정확도는 향상되었으며, 이러한 과정이 반복되면 역추정 모델에 대한 정확도는 일정한 값으로 수렴하였다. 두 번째 실험에서는 개별 역추정 모델의 결과를 통합하기 위하여 투표, 가중투표 및 뎀스터-쉐이퍼 알고리즘을 이용하였으며, 역추정 모델의 통합 결과는 뎀스터-쉐이퍼 알고리즘에 의한 역추정 정확도가 가장 좋은 성능을 보였다.
21세기 미래 인재에게 필요한 핵심 역량으로 컴퓨팅 사고력이 주목받고 있다. 국내외적으로 컴퓨팅 사고력 향상을 위한 소프트웨어 교육이 한창이다. 그중에서 문제해결 프로그래밍 교육은 컴퓨팅 사고력 향상에 도움이 된다. CT-TDPS 학습 모형은 복잡한 문제들을 모듈화하는 분해, 추상화 사고 과정과 이를 구현하는 반복적·점증적 프로그래밍 방식인 애자일(Agile) 개발 방식을 따른다. 본 연구에서는 스크래치를 이용한 문제해결 프로그래밍 교육에 CT-TDPS 학습 모형을 적용하여 컴퓨팅 사고력 향상을 확인하고자 하였다. 연구 결과, CT-TDPS 학습 모형을 적용한 문제해결 프로그래밍 교육에서 컴퓨팅 사고력의 하위 요인인 컴퓨팅 개념, 컴퓨팅 수행, 컴퓨팅 관점에서 모두 향상이 되었음을 확인할 수 있었다. 그리고, Dr.Scratch 자동 평가 결과에 대한 t 검정 결과 실험집단에서 유의한 차이가 있음을 확인하였다.
인공지능 기반 지능형 시스템의 개발에는 일반적으로 신뢰성 높은 대규모 지식처리, 지식의 통합과 인간 수준의 이해, 지식기반 인간-기계협업, 전문가 수준의 지능 서비스 등의 효과적 통합이 요구된다. 특히 빅데이터 이해 기반 자가학습형 지식베이스 및 추론 기술 개발을 목표로 하고 있는 과제의 일환으로 개발 중인 WiseKB 통합 플랫폼은 대용량 지식을 저장하여 추론과정을 통한 질의 및 응답이 가능한 대규모 지식 베이스 역할을 수행하며 이를 위하여 지식표현, 자원통합, 지식저장소, 지식베이스, 복합추론, 지식학습 등의 요소기술들의 효과적 통합이 필수적이다. 통합 플랫폼의 효율적 통합을 위해서는 정확한 요구사항 분석이 중요하며, 이는 시스템의 특성을 고려한 적절한 요구사항 분석 방법론의 적용이 필요하다. 대표적인 요구사항 분석 방법인 순차적 방법론과 순환-점진적 방법론은 WiseKB와 같은 시스템의 대규모 복합적 개발 특성을 고려할 때 다양한 요구사항을 체계적으로 파악하기에 한계가 있다. 본 논문에서는 이러한 한계를 개선하고자 순차적 방법과 순환-점진적 방법론을 결합해 각 단점을 보완하고 대규모 복합적 특성을 갖는 시스템의 요구사항 분석을 효율적으로 진행할 수 있는 통합 방법론을 제시하고, 실제 적용을 통해 그 효과를 보인다.
The Collapse Margin Ratio (CMR) is a notable index used for seismic assessment of the structures. As proposed by FEMA P695, a set of analyses including the Nonlinear Static Analysis (NSA), Incremental Dynamic Analysis (IDA), together with Fragility Analysis, which are typically time-taking and computationally unaffordable, need to be conducted, so that the CMR could be obtained. To address this issue and to achieve a quick and efficient method to estimate the CMR, the Artificial Neural Network (ANN), Response Surface Method (RSM), and Adaptive Neuro-Fuzzy Inference System (ANFIS) will be introduced in the current research. Accordingly, using the NSA results, an attempt was made to find a fast and efficient approach to derive the CMR. To this end, 5016 IDA analyses based on FEMA P695 methodology on 114 various Reinforced Concrete (RC) frames with 1 to 12 stories have been carried out. In this respect, five parameters have been used as the independent and desired inputs of the systems. On the other hand, the CMR is regarded as the output of the systems. Accordingly, a double hidden layer neural network with Levenberg-Marquardt training and learning algorithm was taken into account. Moreover, in the RSM approach, the quadratic system incorporating 20 parameters was implemented. Correspondingly, the Analysis of Variance (ANOVA) has been employed to discuss the results taken from the developed model. Additionally, the essential parameters and interactions are extracted, and input parameters are sorted according to their importance. Moreover, the ANFIS using Takagi-Sugeno fuzzy system was employed. Finally, all methods were compared, and the effective parameters and associated relationships were extracted. In contrast to the other approaches, the ANFIS provided the best efficiency and high accuracy with the minimum desired errors. Comparatively, it was obtained that the ANN method is more effective than the RSM and has a higher regression coefficient and lower statistical errors.
센서 정보, 물류/유통정보, 신용 정보, 주식 정보 등이 과거보다 다양하면서 대용량의 연속 발생 형태 데이터가 발생하고 있다. 이러한 데이터는 대용량의 특의 변화가 빠른 특징들을 가지고 있기 때문에 학습이 어렵다. 이러한 문제점을 해결하기 위해 일정 윈도우 크기의 최근 데이터를 연속적으로 학습시킴으로써 전체 모형을 새롭게 만들거나 모형의 일부분을 대체 하는 방법을 사용하여 왔다. 그러나 이러한 방법은 계속해서 새로운 학습모형을 만들어야 하므로 대용량의 연속 데이터를 학습시키는데 많은 시간과 비용이 든다. 따라서, 이러한 특성에 대비하기 위하여 추가적인 학습 데이터가 발생할 때 마다, 점진적이며 지속적으로 학습을 할 수 있는 학습 기법이 필요하다. 보다 빠른 속도로 학습 모형의 변화 없이 분류를 하기 위하여 대표적인 점진적 학습 방법으로 베이지안 분류기를 사용할 수 있지만, 사전확률을 알고 있다는 가정으로부터 시작을 하게 되어 일정량 이상의 학습데이터가 필요하다. 따라서 본 연구에서는 베이지안 분류기와 같이 점진적으로 학습을 할 수 있지만, 사전 확률을 알지 못하더라고 학습을 할 수 있는 새로운 점진적 학습 알고리즘을 제안하고자 한다. 본 연구에서 제안하는 알고리즘의 기본 개념은 여러 전문가의 의견을 종합하는 방식이다. 여기서는 속성값(attribute value)을 한명의 전문가로 보고 전문가 집단의 의사 결정이 맞을 경우에는 가점을 주고 틀릴 경우에는 감점을 하는 방식으로 학습을 하게 된다. 실험결과 이 방법은 의사결정나무나 베이지언 분류기와 비교해 비슷한 성능을 나타내었으며, 향후에 스트림 데이터 분석에 사용할 가능성을 보였다.
Shaft encoder which encodes the rotational angle of a shaft becomes more important recently due to factory automation and office automation. Although an absolute type encoder is more dsirable due to its convenience an incremental encoder is commonly used because of its cost and technical difficulties Fabricating a high resolution absolute encoder is very diff-cult because the physical size is limited by currently available technology. In order to overcome this difficulty Moire fringe can be used incorporated with gray code. In order to measure the position of fringes which move as the code disk rotates a neural network was developed in this paper. Formerly fringe position is usually measured by a sophisticated software which needs a little long calculation time. However using nerual network method can eliminate such calculation time even though it needs learning job The pro-posed method is verified through several experiments.
In this paper, we propose a stage-wise knowledge transfer method that uses block-wise retraining to transfer the useful knowledge of a pre-trained residual network (ResNet) in a teacher-student framework (TSF). First, multiple hint information transfer and block-wise supervised retraining of the information was alternatively performed between teacher and student ResNet models. Next, Softened output information-based knowledge transfer was additionally considered in the TSF. The results experimentally showed that the proposed method using multiple hint-based bottom-up knowledge transfer coupled with incremental block-wise retraining provided the improved student ResNet with higher accuracy than existing KD and hint-based knowledge transfer methods considered in this study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.