• 제목/요약/키워드: Incremental Forming

검색결과 121건 처리시간 0.024초

원형컵 디프드로잉에서의 주름발생 해석 (Analysis of Wrinkling INitiation and Growth in Cylindrical Cup Deep Drawing Process)

  • 양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 추계학술대회논문집
    • /
    • pp.18-21
    • /
    • 1999
  • The wrinkling of thin sheet metal induced by compressive instability is one of major defects in sheet metal forming processes. compressive instability is influence by many factors such as mechanical properties of the sheet material geometry of the sheet contact conditions and plastic anisotropy. The analysis of compressive instability in a plastically deforming body is rather difficult because the effects of the above-mentioned factors are rather complex and the instability behavior may show swide variations even for small deviations of the factors. in this work the bifurcation theory is introduced for the finite elemental analysis of the instability behavior of a thin sheet with initially sound geometry and property. All the above-mentioned factors are conveniently considered by the finite element method. The instability limit is found by introducing a criterion scheme into the incremental analysis and the post-bifurcation behavior is analyzed by introducing the branching scheme. Wrinkling initiation and growth in the deep drawing process are analyzed.

  • PDF

회전 성형법에 의한 분말단조 제품특성에 관한 연구 (A Study on the Properties of Cold Forging P/M Products by Incremetal Forming Process)

  • 윤덕재;나경환;김영은
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.31-40
    • /
    • 1995
  • Powder metallurgy process has many advantages such as hight efficientyof material, mass productivity and complex shape production with good mechanical properties. Among the powder forming processes, incremental forging allows the consolidation to be achieved with amaller force then those required by conventional forging. In particular the proces known as rotary forging is an unique and prodominant process known as rotary forging is an unique and prodominant process in which the working constraints approximate to those in normal closed die forging. This study is concerned with the powder compaction by rotary forging process. An experimental rotary forging press with 500kN load capacity has been developed, which is equippe dwith the rotational conicla die inclined to the central axis of the press at arbitrary angle. It is found that the highly densified P/M parts can be obtained by rotary forging process and the material properties are superior to those of the conventrional sintered parts. The detailedcomparision of the mechanical properties by rotary forging process with those by conventional process are given.

  • PDF

다단 성형 공정 시 고-Mn 강의 타원형 용기 헤드에서의 변형률 분포: 유한요소해석 (Strain Evolution in High-Mn Steel Ellipsoidal Vessel Head during Multi-forming Process: A Finite Element Analysis)

  • ;;최시훈
    • 소성∙가공
    • /
    • 제32권5호
    • /
    • pp.268-275
    • /
    • 2023
  • ISO 21029 cryogenic vessel is used to transport cryogenic fluids. High-manganese steel (High-Mn steel) is widely regarded as suitable for use at cryogenic temperatures. The conventional way of manufacturing an ellipsoidal vessel head involves incremental stretching, followed by a spinning process. In this study, an alternative method for forming an ellipsoidal vessel head was proposed. Finite element analysis (FEA) was used to theoretically examine the strain evolution during a multi-stage forming process, which involved progressive stretching, deep drawing, and spinning of High-Mn steel. The distribution of effective strain and strain components were analyzed at different regions of the formed part. The FEA results revealed that only normal strains were evident in the dished region of the vessel head due to the stretching process. However, the flange region experienced complex strain evolution during the subsequent deep drawing and spinning process.

로터리 스웨이징 공정의 점진성형에 의한 중공 드라이브샤프트의 진동모드 및 내구특성 (Vibration Mode and Durability Characteristics of Automotive IDS using Rotary Swaging Process for Incremental Forming)

  • 임성주;이낙규;이지환
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.127-133
    • /
    • 2005
  • Rotary swaging is one of the incremental forming process which is a chipless process using the reduction of cross-sections of bars, tubes and wires. The TDS(Tube Drive Shaft) of monobloc used in automotive has been developed by the rotary swaging process. The mechanical characteristics of swaged parts such as the hardness, thickness and roughness are also estimated to conduct experimental analyses of rotary swaging process with the materials of 34Mn5 Furthermore the change in the vibration mode of TDS due to design parameters, which are the tube length, diameter and thickness, has been investigated and analysed. The weight of the TDS product is smaller by about $12.8\%$ than that of SDS with the same performance. It could be evidently found that the TDS is designed to be much lighter than SDS (Solid Drive Shaft). This advantage might give some possibility to improve the NVH (Noise-Vibration-Harshness) characteristics. A maximum torque and a total number of torsional repetitions for the TDS is checked and measured to know the torsional intensity and fatigue strength through the static torsion test and torsional durability test, respectively. A total number of the torsional repetitions up to the fracture for the TDS is greater than 250,000 times.

Marguerre shell type secant matrices for the postbuckling analysis of thin, shallow composite shells

  • Arul Jayachandran, S.;Kalyanaraman, V.;Narayanan, R.
    • Structural Engineering and Mechanics
    • /
    • 제18권1호
    • /
    • pp.41-58
    • /
    • 2004
  • The postbuckling behaviour of thin shells has fascinated researchers because the theoretical prediction and their experimental verification are often different. In reality, shell panels possess small imperfections and these can cause large reduction in static buckling strength. This is more relevant in thin laminated composite shells. To study the postbuckling behaviour of thin, imperfect laminated composite shells using finite elements, explicit incremental or secant matrices have been presented in this paper. These incremental matrices which are derived using Marguerre's shallow shell theory can be used in combination with any thin plate/shell finite element (Classical Laminated Plate Theory - CLPT) and can be easily extended to the First Order Shear deformation Theory (FOST). The advantage of the present formulation is that it involves no numerical approximation in forming total potential energy of the shell during large deformations as opposed to earlier approximate formulations published in the literature. The initial imperfection in shells could be modeled by simply adjusting the ordinate of the shell forms. The present formulation is very easy to implement in any existing finite element codes. The secant matrices presented in this paper are shown to be very accurate in tracing the postbuckling behaviour of thin isotropic and laminated composite shells with general initial imperfections.

굽힘이력을 고려한 딥드로잉공정의 유한요소역해석 (Finite Element Inverse Analysis of the Deep Drawing Process Considering Bending History)

  • 허지향;윤종헌;바오이동;허훈
    • 소성∙가공
    • /
    • 제16권8호
    • /
    • pp.590-595
    • /
    • 2007
  • This paper introduces a new approach to take account of bending history in finite element inverse analysis during sheet metal forming process. A modified membrane element was adopted for finite element inverse analysis so that bending-unbending energy was additionally imposed in the total plastic energy, predicting bending-unbending regions using the geometry of the final shape and tools. An algorithm was applied to a cylindrical cup deep drawing process. The blank shape and the distribution of the thickness strain were compared with those obtained from the incremental finite element analysis in order to evaluate the effect of the bending history. The algorithm reduced the difference between the results of the inverse analysis from those of the incremental analysis due to bending history. The analysis was also carried out with the variation of the thickness of the initial blank to investigate the effect of bending deformation. The results showed that the difference was remarkably reduced as the thickness of the initial blank increased. This indicates that the finite element inverse analysis cooperated with the suggested scheme is useful to obtain more accurate results, especially when bending effects are significant.

소성가공시 재료유동에 대한 수치해석 및 모델실험 (Analysis of Mateiral Flow in Metal Forming Processes by Using Computer Simulation and Experiment with Model Material)

  • 김헌영;김동원
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.285-299
    • /
    • 1993
  • 본 연구에서는 UBET를 이용한 프로그램을 개발하여 소성가공 문제에 적용하였 으며, 형단조 가공에서 형 내부의 재료의 비정상 유동을 해석할 수 있는 알고리듬을 제시하였다. 매 변형단계에서 요소별 가공경화를 고려하여 자동적으로 요소시스템 (element system)을 재구성함으로써, UBET에 의한 소성가공 문제 해석을 효율적으로 할 수 있도록 하였다. 축대칭 형단조 문제에 있어서 리브의 높이대 폭의 비가 1.0, 2.0일때 UBET 및 탄소성 유한요소법에 의하여 형 내부의 재료 층만 과정을 시뮬레이션 하였으며, 단조 하중, 다이 충만도 및 재료의 유동 경향을 분석하여 적절한 유동 모델 과 초기 소재의 형상을 구하였다. 모델 재료를 사용한 형단조 모의실험을 수행하여 재료유동 및 변형 단계별 단조 하중분포 등을 구하였으며, 해석결과와 비교 분석하였 다. 또한 후방압출(backward extrusion) 및 평두형 펀치에 의한 평판압입(flat pu- nch indentation) 문제를 해석하였다. 후방압출시 모서리부의 라운딩(rounding) 효 과가 재료 유동에 미치는 영향을 고려하였으며, 평두형 펀치에 의한 평판압입에서는 상당 소성변형률(equivalent plastic strain)의 분포를 탄소성 유한요소법(elastic plastic finite element method)에 의한 결과와 비교하였다.

분기좌굴이론을 이용한 박판성형공정에서의 주름발생해석 (An analysis of the wrinkling initiation in sheet metal forming using bifurcation theory)

  • 김종봉;양동렬;윤정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.28-31
    • /
    • 1998
  • Wrinkling is one of the major defects in sheet metal products and may be also attributable to the wear of the tool. The initiation and growth of the wrinkles are influenced by many factors such as stress state, mechanical properites of the sheet material, geometry of the body, and contact condition. It is difficult to analyze the wrinkling initiation and growth considering the factors because the effects of the factors are very complex and the wrinkling behavior may show wide variation for small deviation of the factors. In this study, the bifurcation theory is introduced for the finite element analysis of wrinkling initiation and growth, All the above mentioned factors are conveniently considered by finite element method. The finite element formulation is based on the incremental deformation theory and elastic-plastic material modeling. The finite element analysis is carried out using the continuum-based resultant shell elements considering the planar anisotropy of the sheet metal. The proposed method is verified by employing to column buckling problem. And then, the initiation and growth of wrinkling in deep drawing of cylindrical cup are analyzed.

  • PDF

점진 전개기법 및 유한요소 역해석법을 이용한 자동차 판넬 트리밍 라인 설계 (Trimming Line Design using Progressive Development Method and One Step FEM)

  • 송윤준;정완진;박춘달
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 제5회 박판성형 SYMPOSIUM
    • /
    • pp.68-71
    • /
    • 2006
  • Traditional section-based method develops blank along section planes and find trimming line by generating loop of end points. This method suffers from inaccurate results for regions with out-of-section motion. In this study, new fast method to find feasible trimming line is proposed. One step FEM is used to analyze the flanging and incremental development method is proposed to handle bad-shaped mesh and undercut part. Also in order to remedy mesh distortion during development, energy minimization technique is utilized. The proposed method is verified by shrink/stretch flange forming and successfully applied to the complex industrial applications such as door outer flanging process.

  • PDF

굽힘성형을 위한 금속 샌드위치판재의 내부구조재 개발 (The Development of Inner Structure of Metallic Sandwich Plates for Bending)

  • 성대용;정창균;윤석준;심도식;이상훈;안동규;양동열
    • 소성∙가공
    • /
    • 제15권2호
    • /
    • pp.126-131
    • /
    • 2006
  • Metallic sandwich plates are ultra-light materials not only with high strength and stiffness but also with other multifunctional physical properties. Inner dimpled shell structure can be fabricated by a piecewise sectional forming process, and then bonded with face sheets of the same material by resistance welding. Possible region for bending and limit radius of curvature are defined to compare the formability of sandwich plates. Tests have shown that sandwich plates with inner dimpled shell structure subject to bending have longer possible region for bending and smaller limit radius of curvature than other types of sandwich plates. The proposed inner dimpled shell structure is shown to have better formability of sandwich plates for bending than other types inner structures.