• 제목/요약/키워드: Increasing bearing capacity

검색결과 257건 처리시간 0.025초

Research on flexural bearing capacity of cold-formed thin-walled steel and reinforced concrete sandwich composite slabs

  • Qiao, Wentao;Huang, Zhiyuan;Yan, Xiaoshuo;Wang, Dong;Meng, Lijun
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.219-230
    • /
    • 2022
  • The aim of this paper is to study the mechanical behaviors of the cold-formed thin-walled steel and reinforced concrete sandwich composite slab (CTS&RC-SCS) under vertical loads and to develop the calculation methods of its flexural bearing capacity and section stiffness. Two CTS&RC-SCS specimens were designed and manufactured to carry out the static loading test, and meanwhile, the numerical simulation analyses based on finite element method were implemented. The comparison between experimental results and numerical analysis results shows that the CTS&RC-SCS has good flexural capacity and ductility, and the accuracy and rationality of the numerical simulation analysis are verified. Further, the variable parameter analysis results indicate that neither increasing the concrete strength grade nor increasing the thickness of C-sections can significantly improve the flexural capacity of CTS&RC-SCS. With the increase of the ratio of longitudinal bars and the thickness of the composite slab, the flexural capacity of CTS&RC-SCS will be significantly increased. On the basis of experimental research and numerical analysis above, the calculation formula of the flexural capacity of CTS&RC-SCS was deduced according to the plastic section design theory, and section stiffness calculation formula was proposed according to the theory of transformed section. In terms of the ultimate flexural capacity and mid-span deflection, the calculated values based on the formulas and the experimental values are in good agreement.

침하량과 압축량을 고려한 말뚝의 설계법 개발을 위한 연구 (A Study for the Development of Pile Design Method Considering Settlement and Compression)

  • 임종석;하혁;정상균
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1287-1294
    • /
    • 2006
  • A pile is compressed with settlements when loading and bearing capacity is altered along relative displacement of pile/soil on settlement and compression. Settlements of pile displaying limit skin friction is different from displaying tip resistance. Therefore, it is an error in traditional method that bearing capacity of pile is estimated from the sum of limit skin fraction and tip resistance. Accordingly, development of design method considering behavior of load-settlement is needed. In this study, we would like to establish the base for development of design method considering bearing capacity altering along displacement on settlement and compression. For this, we established system and substance of design method. And in order to establish relationship of load-settlement of pile on the type of soil, we analyzed and arranged existing database and pile loading test. On design method, settlement is assumed gradually on each capacity level being assumed gradually. Bearing capacity developing on the pile is obtained on each settlement level. Until the obtained bearing capacity will be equal to assumed capacity, this process is continued with increasing settlement. Load-settlement curve for soil classification is sketched in the process computing settlement on assumed capacity. This design method will be materialized by computation program.

  • PDF

단일말뚝 형태의 모형시험을 통한 SCP와 GCP의 극한지지력 비교 (Comparison of Bearing Capacity between SCP and GCP by Unit Cell Model Tests)

  • 김병일;이승원;김범상;유완규
    • 한국지반공학회논문집
    • /
    • 제20권8호
    • /
    • pp.41-48
    • /
    • 2004
  • 이 연구에서는 아직 국내에서는 시공실적이 없는 쇄석다짐말뚝(Gravel Compaction pile)공법의 적용성을 판단하기 위하여 SCP와 GCP의 모형토조시험을 수행하였다. 즉, 원통형 압밀상자(지름 20cm, 높이 40cm)에 치환율 30, 40, 50, 60, 70%로 달리 조성하여 원심력 압밀시험기를 이용하여 압밀시킨 후, 재하시험을 통하여 두 공법의 지지력 특성을 비교 검토하였다. 또한 모형시험을 통해 얻어진 극한지지력을 기존에 제안된 SCP 및 GCP 시공지반의 극한지지력 산정식을 이용한 계산값과 비교하였다. 모형시험 결과 GCP 시공지반이 SCP 시공지반에 비해 지지력 측면에서 더 우수한 것으로 나타났다.

Characteristics of a Coupled Gas Lubricated Bearing for a Scaled-Up Micro Gas Turbine

  • Lee, Yong Bok;Kwak, Hyunduck;Kim, Chang Ho;Jang, Gun Hee
    • KSTLE International Journal
    • /
    • 제1권2호
    • /
    • pp.107-112
    • /
    • 2000
  • In case of the limitation of Deep RIE fabrication far Micro Gas Turbine, bearing aspect ratio is limited in very small value. The characteristics such as pressure distribution, load capacity and non-linearity of a short bearing of L/D=0.083 and a conventional bearing of L/D=1.0 with coupled boundary effects are investigated for Micro Gas Turbine bearings. The coupled effect was analyzed by mass conservation at coupled end area. The results, increasing load capacity and non-linearity due to the coupled effect of thrust and journal bearing, are obtained and the selection of journal bearing type is discussed.

  • PDF

Coupled Boundary Effects on a Gas Lubricated Bearing far a Scaled-Up Micro Gas Turbine

  • Hyunduck Kwak;Lee, Yong-Bok;Kim, Chang-Ho;Gunhee Jang
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.243-249
    • /
    • 2000
  • In case of the limitation of Deep RIE fabrication for Micro Gas Turbine, bearing aspect ratio is limited in very small value. The characteristics such as pressure distribution load capacity and non-linearity of a short bearing of L/D=0.083 and a conventional bearing of L/D=1.0 with coupled boundary effects are investigated far Micro Gas Tlubine bearings. The coupled efffect was analyzed by mass conservation at coupled end area. The results, increasing load capacity and non-linearity due to the coupled effect of thrust and journal bearing, are obtained and the selection of journal bearing type is discussed.

  • PDF

Experimental estimate of Nγ values and corresponding settlements for square footings on finite layer of sand

  • Dixit, Manish S.;Patil, Kailas A.
    • Geomechanics and Engineering
    • /
    • 제5권4호
    • /
    • pp.363-377
    • /
    • 2013
  • Any structure constructed on the earth is supported by the underlying soil. Foundation is an interfacing element between superstructure and the underlying soil that transmits the loads supported by the foundation including its self weight. Foundation design requires evaluation of safe bearing capacity along with both immediate and long term settlements. Weak and compressible soils are subjected to problems related to bearing capacity and settlement. The conventional method of design of footing requires sufficient safety against failure and the settlement must be kept within the allowable limit. These requirements are dependent on the bearing capacity of soil. Thus, the estimation of load carrying capacity of footing is the most important step in the design of foundation. A number of theoretical approaches, in-situ tests and laboratory model tests are available to find out the bearing capacity of footings. The reliability of any theory can be demonstrated by comparing it with the experimental results. Results from laboratory model tests on square footings resting on sand are presented in this paper. The variation of bearing capacity of sand below a model plate footing of square shape with variation in size, depth and the effect of permissible settlement are evaluated. A steel tank of size $900mm{\times}1200mm{\times}1000mm$ is used for conducting model tests. Bearing capacity factor $N_{\gamma}$ is evaluated and is compared with Terzaghi, Meyerhof, Hansen and Vesic's $N_{\gamma}$ values. From the experimental investigations it is found that, as the depth of sand cushion below the footing ($D_{sc}$) increases, ultimate bearing capacity and settlement values show an increasing trend up to a certain depth of sand cushion.

Seismic analysis of RC tubular columns in air-cooled supporting structure of TPP

  • Wang, Bo;Yang, Ke;Dai, Huijuan;Bai, Guoliang;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.581-598
    • /
    • 2020
  • This paper aims to investigate the seismic behavior and influence parameters of the large-scaled thin-walled reinforced concrete (RC) tubular columns in air-cooled supporting structures of thermal power plants (TPPs). Cyclic loading tests and finite element analysis were performed on 1/8-scaled specimens considering the influence of wall diameter ratio, axial compression ratio, longitudinal reinforcement ratio, stirrup reinforcement ratio and adding steel diagonal braces (SDBs). The research results showed that the cracks mainly occurred on the lower half part of RC tubular columns during the cyclic loading test; the specimen with the minimum wall diameter ratio presented the earlier cracking and had the most cracks; the failure mode of RC tubular columns was large bias compression failure; increasing the axial compression ratio could increase the lateral bearing capacity and energy dissipation capacity, but also weaken the ductility and aggravate the lateral stiffness deterioration; increasing the longitudinal reinforcement ratio could efficiently enhance the seismic behavior; increasing the stirrup reinforcement ratio was favorable to the ductility; RC tubular columns with SDBs had a much higher bearing capacity and lateral stiffness than those without SDBs, and with the decrease of the angle between columns and SDBs, both bearing capacity and lateral stiffness increased significantly.

지오그리드 보강 Stone Column의 파괴메카니즘 및 지지력 특성 - 축소모형실험을 통한 고찰 (Load Carrying Capacity and Failure Mechanism of Geogrid Reinforced Stone Columns : Reduced-Scale Model Tests)

  • 이대영;송아란;유충식
    • 한국지반공학회논문집
    • /
    • 제22권10호
    • /
    • pp.121-129
    • /
    • 2006
  • 쇄석기둥 공법은 성토제방, 교량교대기초, 오일탱크와 같은 침하에 민감한 구조물의 지지력 증대 및 압밀 촉진에 효과적인 지반 개량 공법이다. 쇄석기둥 공법은 지반의 지지력 증대, 침하감소, 측방유동 방지 및 액상화 방지 등의 효과를 기대할 수 있다. 최근 들어서는 쇄석기둥의 외벽을 토목섬유로 보강(감쌈) 구속력을 증가시켜 줌으로써 쇄석기둥 지반의 하중지지력을 개선시키는 공법에 대한 관심이 증가하고 있으나, 지오그리드 보강 쇄석기둥 공법에 대한 연구는 체계화되어 있지 않는 실정이다. 본 연구에서는 실내모형실험을 통해 지오그리드로 보강 쇄석기둥의 하중지지력 특성 및 파괴형태를 고찰하였으며, 실험결과를 통해 지오그리드로 보강하지 않은 쇄석기둥공법에 비해 지오그리드보강 쇄석기둥공법의 지지력 개선효과가 크게 나타남을 알 수 있다.

현장타설말뚝의 정재하시험에 의한 지지력과 이론식에 의한 지지력과의 비교 (The Bearing Capacity Comparison of Drilled Shaft by the Static Load Test and the Suggested Bearing Capacity Formulas)

  • 천병식;김원철;최용규;서덕동
    • 한국지반공학회논문집
    • /
    • 제19권2호
    • /
    • pp.237-246
    • /
    • 2003
  • 항타말뚝은 진동과 소음같은 환경적인 문제점이 있다. 특히 대상 토질이 자갈, 호박돌, 풍화암으로 구성되어있다면 항타말뚝의 적용은 불가능하기 때문에 우리나라에서는 현장말뚝의 적용이 증가하고 있는 추세이다. 일반적으로 이론적인 공식에 의한 현장타설말뚝의 지지력은 과소하게 산정되는 것으로 알려져 있다. 본 연구에서는 기존에 제안된 국내외 지지력 산정식과 현장시험을 통한 실측데이터를 비교하기위해 광안대로와 수영 3호교의 암반에 근입된 현장 타설말뚝에 대한 정재하시험을 수행하였으며, 현장타설말뚝의 주변마찰력을 측정하기 위하여 변위계를 설치하였다. 현장시험을 통한 현장타설말뚝의 거동은 반복하중 재하시 완전한 탄성거동을 보였으므로 이는 실제말뚝의 극한지지력에 도달하지 못하였음을 입증한다. 이때 측정된 말뚝의 지지력이 이론식에 의하여 산정된 지지력보다 크게 산정되었다. 또한 실험에서 측정된 결과에 의하면 현장타설말뚝의 주된 지지력이 선단지지력이 아닌 주변마찰저항에 의한 것이라는 것을 보였다. 그리고 이와같은 결과에 의거하여 현장타설말뚝의 설계에 대한 몇가지 제안들을 도출하였다.

사질토에 있어서 말뚝의 선단부 지지력 (End Bearing Capacity of a Pile in Cohesionless Soils)

  • 이명환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1988년도 학술세미나 강연집
    • /
    • pp.71-123
    • /
    • 1988
  • The aim of this paper is to examine the end bearing capacity of a pile in cohesionless soils. The ode of failure of soil due to pile installation is assumed from experimental observation of actual soil deformation. A new solution is proposed complying with the assumed mode of failure by employing the theory of cavity expansion. The effect of curvature of failure envelope is studied in relation to tile proposed solution. The influence of a curved failure envelope becomes larger with increasing degree of curvature and the level of confining stress. This effect in some cases or reduce the end bearing capacity by tore the 80 percent compared with that given by a straight failure envelope. For practical application of tile proposed solution, the method of determining the average volume change in the plastic zone is re-evaluated. The proposed solution is confirmed by comparing the theoretical values with experimental results obtained from model pile tests in a calibration chamber. The comparison shows that the proposed solution provides a reasonable prediction of end bearing capacity for both weak and strong grained soils.

  • PDF