• Title/Summary/Keyword: Increased running speed

검색결과 121건 처리시간 0.027초

달리기 속도의 변화가 인체 충격 가속도와 생체역학적 변인에 미치는 영향 (Effects of Running Speed on Body Impact Acceleration and Biomechanical Variables)

  • Young-Seong Lee;Jae-Won Kang;Sang-Kyoon Park
    • 한국운동역학회지
    • /
    • 제34권2호
    • /
    • pp.81-92
    • /
    • 2024
  • Objective: The purpose of this study was to analyze the impact acceleration, shock attenuation and biomechanical variables at various running speed. Method: 20 subjects (height: 176.15 ± 0.63 cm, weight: 70.95 ± 9.77 kg, age: 27.00 ± 4.65 yrs.) participated in this study. The subjects ran at four different speeds (2.5 m/s, 3.0 m/s, 3.5 m/s, 4.0 m/s). Three-dimensional accelerometers were attached to the distal tibia, sternum and head. Gait parameters, biomechanical variables (lower extremity joint angle, moment, power and ground reaction force) and acceleration variables (impact acceleration, shock attenuation) were calculated during the stance phase of the running. Repeated measures ANOVA was used with an alpha level of .05. Results: In gait parameters, decreased stance time, increasing stride length and stride frequency with increasing running speed. And at swing time 2.5 m/s and 4.0 m/s was decreased compared to 3.0 m/s and 3.5 m/s. Biomechanical variables statistically increased with increasing running speed except knee joint ROM, maximum ankle dorsiflexion moment, and maximum hip flexion moment. In acceleration variables as the running speed increased (2.5 m/s to 4.0 m/s), the impact acceleration on the distal tibia increased by more than twice, while the sternum and head increased by approximately 1.1 and 1.2 times, respectively. And shock attenuation (tibia to head) increased as the running speed increased. Conclusion: When running speed increases, the magnitude and increasing rate of sternum and head acceleration are lower compared to the proximal tibia, while shock attenuation increases. This suggests that limiting trunk movement and increasing lower limb movement effectively reduce impact from increased shock. However, to fully understand the body's mechanism for reducing shock, further studies are needed with accelerometers attached to more segments to examine their relationship with kinematic variables.

착지 시 달리기 속도 증가가 충격 쇼크 흡수에 미치는 영향 (The Effect of Increased Running Speed on the Magnitude of Impact Shock Attenuation during Ground Contact)

  • Ryu, Jiseon
    • 한국운동역학회지
    • /
    • 제30권3호
    • /
    • pp.197-204
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the effect of increased running speed on the magnitude of impact shock attenuation in high frequency (9~20 Hz) at support phase on the treadmill running. Method: Twenty-four healthy male heel-toe runners participated in this study. Average age, height, mass, and preference running speed were 23.43±3.78 years, 176.44±3.38 cm, 71.05±9.04 kg, and 3.0±0.5 m/s, respectively. Three triaxial accelerometer (Noraxon, USA) were mounted to the tuberosity of tibia, PSIS (postero-superior iliac spine), and forehead to collect acceleration signals, respectively. Accelerations were collected for 20 strides at 1,000 Hz during treadmill (Bertec, USA) running at speed of 2.5, 3.0, 3.5, and 4.0 m/s. Power Spectrum Density (PSD) of three acceleration signals was calculated to use in transfer function describing the gain and attenuation of impact shock between the tibia and PSIS, and forehead. One-way ANOVA were performed to compare magnitude of shock attenuation between and within running speeds. The alpha level for all statistical tests was .05. Results: No significant differences resulted for magnitude of the vertical and resultant impact shock attenuation between the tibia and PSIS, and forehead between running speeds. However, significant differences within running speed were found in magnitude of the vertical shock attenuation between tibia and PSIS, tibia and forehead at speed of 2.5, 3.0 m/s, respectively. Conclusion: In conclusion, it might be conjectured that muscles covering the knee and ankle joints and shoe's heel pad need to strengthen to keep the lower extremities from injuries by impact shock at relatively fast running speed that faster than preferred running speed.

고속철도의 증속 시 공기역학적 문제 및 요구사항에 대한 연구 (A Study on Aerodynamic Problems and Requirements for speed up of High-speed railway system)

  • 권혁빈;김대상;남성원;윤수환;박춘수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.20-27
    • /
    • 2011
  • High-speed railway system is exposed to severe aerodynamic problems and has various requirements both on design and operation; 80% of running resistance is composed of aerodynamic drag, the cross-sectional area and portal shape of tunnel should be designed under aerodynamic consideration, and natural wind velocity should always be monitored to prevent the overturning of train by crosswinds. In addition, most of the aerodynamic problems are proportional to the running speed or square of the running speed. Thus, when the running speed of a high-speed railway system either on operation or under construction is to be increased, the aerodynamic problems should be assessed in advance and the countermeasures should be prepared to alleviate the aerodynamic problems to meet certain requirements. In this study, aerodynamic problems that could occur at speed up of high-speed line have been investigated and aerodynamic requirements to meet the increased operational speed have been studied referring the international and domestic rules, guidance, and recommendations.

  • PDF

곡선부 통과 열차의 주행안전성 평가에 관한 연구 (A Study on the Assessment of Running Safety of Railway Vehicle passing through Curve)

  • 엄범규;김종오;양경탁;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.849-854
    • /
    • 2008
  • For the running safety assessment of Saemaul train passing through curves, an analysis model for multibody system has been developed. By using this model and ADAMS/Rail, sensitivity analyses depending on the variation of parameters related to the derailment coefficients have been conducted. According to the increase of running speed, the derailment coefficient and unload ratio were increased. At high speed, the derailment coefficient and unload ratio of left wheel showed higher than right wheel. If the cant increased, the derailment coefficient and unload ratio increased. but decreased based on the balance cant value by the curvature and running speed.

  • PDF

곡선부 통과 차량의 진동특성 및 안전성 평가 (A Safety Assessment and Vibration Characteristics of Railway Vehicle Passing Curves)

  • 박광수;이승일;이희성
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.993-1001
    • /
    • 2007
  • An analysis model has been developed to assess running safety of railway vehicle passing curves. By using ADAMS/Rail, a computer analysis has been conducted by changing various parameters according to the track conditions. Analysis results show as follows: A derailment coefficient of left wheel was increased according to increase of cant at low speed, while it was decreased as increase of cant at high speed. A unload rate of left wheel was also increased according to increase of cant at low speed, while it was decreased as increase of cant at high speed. A wear number of left wheel was increased according to increase of cant at all speed, but only at 35 m/s, it was decreased as increase of cant. A friction coefficient of left wheel was Increased according to increase of cant at all speed, but only at 35 m/s. it was decreased as increase of cant.

주행속도를 고려한 고속도로 나들목 연결로의 편경사 상향조정에 관한 연구 (Increasing Superelevation on Freeway Interchange Ramp based on Running Speed)

  • 노정훈;김홍배;서무인;이길재
    • 한국도로학회논문집
    • /
    • 제18권6호
    • /
    • pp.161-171
    • /
    • 2016
  • OBJECTIVES : Many roadway departure crashes on the freeway interchange are due to the running speed being greater than the design speed. This study aims to ensure a safe and pleasant driving experience for the driver by increasing the superelevation based on the running speed on the highway interchange ramp. METHODS : The mean running speed for each type of ramp is calculated on site survey more than 10 interchanges. Using the mean running speed, we calculated the superelevation and the side friction using the method given in "A Policy on Geometric Design of Highways and Street" (Pages 145-166, 2001). Then, we applied the modified method to the superelevation range. Finally, we ensured safety using the Degree of Safety that is proven by the centrifugal acceleration ratio as suggested by Joseph Craus (1978). RESULTS : The mean running speeds are 50 km/h and 65 km/h when the design speeds are 40 km/h and 50 km/h, respectively. After the application of the new method used in this study, the superelevation will be increased by 9.0% and 10.0% when the mean running speeds are 50 km/h and 65 km/h, respectively. CONCLUSIONS : A higher superelevation can give the driver a more comfortable and safe driving environment. However, the driver needs to be aware of snow and low-temperature conditions.

1 튜브 2 챔버 Bent Silkworm형 염색기의 구동특성 (Driving Characteristics of a 1 Tube 2 Chamber Bent Silkworm Type Dyeing Machine)

  • 이춘길;성우경;이광수
    • 한국염색가공학회지
    • /
    • 제11권2호
    • /
    • pp.64-74
    • /
    • 1999
  • The driving characteristics of the 1 tube 2 chamber bent silkworm type dyeing machine are reported. This dyeing machine is a newly developed energy saving machine. In this study, the driving characteristics of the 1 tube 2 chamber bent silkworm type dyeing machine are examined. Specially the relationship between main body pressure and the electric current of the blower motor, the relationship between main body pressure and the air pressure of the blower nozzle, the effect of the air pressure of the blower on the running speed of the fabric, and the effect of main body temperature were discussed experimentally. Through the experimental data, the following results were obtained. 1. Blower motor electric current and blower nozzle air pressure increased as main body pressure increased due to the temperature increase of the main body. 2. The running speed of the fabric increased as blower nozzle air pressure increased. The difference in running speed between winch reel driving and no winch reel driving at a blower frequency of 60Hz was higher than that of 70Hz. 3. The electric current of the blower rioter and blower nozzle air pressure increased rapidly at the initial state. As the experimental time passed, the main body pressure increased slowly. as the main body temperature increased.

  • PDF

한국형 고속전철용 개발대차의 주행시험대에서 주행성능평가 (The Running Test of the Developed Bogie on the Roller Rig for Korean High Speed Train)

  • 정훈;김진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.218-221
    • /
    • 2004
  • This Research is to test the running stability of the developed bogie with 350km/h of which conventional speed is faster than Korea TGV 300Km/h. The running stability test has been executed in status of a car with the developed bogie on the roller rigger to adjust similar to the actual condition. And the test has been done in the two rail conditions, i.e. excitation and non-excitation, respectively. Running speed of bogie increased by the roller step by step. In consequence, the developed bogie in the non-excitation has run without any unstable point for 400kn0h. Vibration characteristics of carbody also was within the value specified on the UIC 518.

  • PDF

지반조건에 따른 고속철도 토공노반의 공진에 관한 연구 (Study on the Resonance in Trackbed of High-Speed Railway Considering Ground Condition)

  • 이일화;황선근;최찬용
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1320-1325
    • /
    • 2006
  • When the train running on the high-speed track, there is a speed band which track distortion is unusually increased according to the condition of track and roadbed. This speed is called critical velocity and physical parameter values are increased greatly. These phenomenon happened as high-speed train were developed, studied regularly through TGV 100 running test in France. As research result until now, the main reason is soft roadbed's bearing capacity. Wave propagation and track support capacity is varied by the ground characteristics. This paper achieved theoretical examination about resonance band(speed and frequency) that occurred in roadbed on the base rock in point of geotechnical engineering. The examination of resonance divides with ground response analysis, critical band analysis by the shear wave velocity of roadbed and train critical speed through the ground stratum.

  • PDF

암반상 토노반 구간에서의 공진 속도 및 주파수에 대한 이론적 연구 (Theoretical Study for the Resonance Speed and Frequency in Roadbed on the Base Rock)

  • 이일화;황선근;이수형;최찬용
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.443-447
    • /
    • 2005
  • When the high-speed train running on the track, there is a speed band which track distortion is unusually increased according to the condition of track and roadbed. This speed is called critical velocity and physical parameter value increased greatly. These phenomenon happened as high-speed train were developed, studied regularly through TGV 100 running test in France. As research result until now, the main reason is soft roadbed's capacity. Wave propagation and track support capacity is varied by the site characteristics. This paper achieved theoretical examination about resonance band(speed and frequency) that occurred in roadbed on the base rock in point of geotechnical engineering. The examination of resonance divides with ground response analysis, critical band analysis by the shear wave velocity of roadbed, train critical speed through the ground stratum.

  • PDF