• 제목/요약/키워드: Incoming angle

검색결과 56건 처리시간 0.018초

Galloping characteristics of a 1000-kV UHV iced transmission line in the full range of wind attack angles

  • Lou, Wenjuan;Wu, Huihui;Wen, Zuopeng;Liang, Hongchao
    • Wind and Structures
    • /
    • 제34권2호
    • /
    • pp.173-183
    • /
    • 2022
  • The galloping of iced conductors has long been a severe threat to the safety of overhead transmission lines. Compared with normal transmission lines, the ultra-high-voltage (UHV) transmission lines are more prone to galloping, and the damage caused is more severe. To control the galloping of UHV lines, it is necessary to conduct a comprehensive analysis of galloping characteristics. In this paper, a large-span 1000-kV UHV transmission line in China is taken as a practical example where an 8-bundled conductor with D-shaped icing is adopted. Galerkin method is employed for the time history calculation. For the wind attack angle range of 0°~180°, the galloping amplitudes in vertical, horizontal, and torsional directions are calculated. Furthermore, the vibration frequencies and galloping shapes are analyzed for the most severe conditions. The results show that the wind at 0°~10° attack angles can induce large torsional displacement, and this range of attack angles is also most likely to occur in reality. The galloping with largest amplitudes in all three directions occurs at the attack angle of 170° where the incoming flow is at the non-iced side, due to the strong aerodynamic instability. In addition, with wind speed increasing, galloping modes with higher frequencies appear and make the galloping shape more complex, indicating strong nonlinear behavior. Based on the galloping amplitudes of three directions, the full range of wind attack angles are divided into five galloping regions of different severity levels. The results obtained can promote the understanding of galloping and provide a reference for the anti-galloping design of UHV transmission lines.

북해용 심해 시추 선박의 유체성능 특성 평가 (Hydrodynamic Characteristics of Deepwater Drillship for North Sea)

  • 김문성;박종진;안영규;김홍수;전호환
    • 한국해양공학회지
    • /
    • 제29권4호
    • /
    • pp.300-308
    • /
    • 2015
  • With the increases in oil and gas prices, and energy consumption, drillship construction has increased during the last decade. A drillship using a dynamic positioning (DP) system to maintain its position and heading angle during drilling operations. In addition, a drillship is equipped with a moonpool structure to allow its drilling systems to be operated in the midship section. A drillship for the North Sea is specially designed to endure harsh environmental loads. For safe operation in the North Sea, the drillship should have good motion response and robust hull strength. A break water should be considered on the bow and side deck to prevent the green water on deck phenomenon from incoming waves. In addition, the moonpool should be designed to reduce the speed loss and resonance motion. In this study, the hydrodynamic characteristics of a drillship for the North Sea were examined in relation to the motion, wave loads, green water, and moonpool resonance in the initial design stage.

IR 레이저 기반 연기감지기를 위한 고정밀 자동초점 정합장치에 관한 연구 (A Study on High-precision Autofocus Matching Device for Smoke Detector Based on IR Laser)

  • 김관형;신동석;오암석
    • 한국정보통신학회논문지
    • /
    • 제18권11호
    • /
    • pp.2759-2764
    • /
    • 2014
  • 화재감지 시간을 단축하기 위해서 연기감지기가 활용되는 추세이며, 발신기와 수신기가 100m이상 이격되어 설치되는 구조의 연기감지기는 외부환경의 영향으로 인한 발신기의 각도변화에 따라 수광부 레이저 포인트 위치가 매우 민감하게 변화한다. 본 논문에서는 레이저 발신기와 수신기 간의 원거리 설치에 따른 레이저 초점 설정의 어려움을 해결하고 외부 환경에 따른 초점 정합의 문제를 해결하기 위해서 다중 웜기어를 활용한 고정밀 제어장치와 레이저 광선의 틀어진 각도를 조정 할 수 있는 자동초점 정합 알고리즘을 제시한다.

An auto weather-vaning system for a DP vessel that uses a nonlinear controller and a disturbance observer

  • Kim, Dae Hyuk;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.98-118
    • /
    • 2014
  • An auto weather-vaning system for a Dynamic Positioning (DP) vessel is proposed. When a DP vessel is operating, its position keeping is hindered by ocean environmental disturbances which include the ocean current, wave and wind. Generally, most ocean vessels have a longitudinal length that is larger than the transverse width. The largest load acts on the DP vessel by ocean disturbances, when the disturbances are incoming in the transverse direction. Weather-vaning is the concept of making the heading angle of the DP vessel head toward (or sway from) the disturbance direction. This enables the DP vessel to not only perform marine operations stably and safely, but also to maintain its position with minimum control forces (surge & sway components). To implement auto weather-vaning, a nonlinear controller and a disturbance observer are used. The disturbance observer transforms a real plant to the nominal model without disturbance to enhance the control performance. And the nonlinear controller deals with the kinematic nonlinearity. The auto weather-vaning system is completed by adding a weather-vaning algorithm to disturbance based controller. Numerical simulations of a semi-submersible type vessel were performed for the validation. The results show that the proposed method enables a DP vessel to maintain its position with minimum control force.

제주도 고산지역 자외선복사의 월변화 특성과 원인 고찰 (A Study on the Monthly Characteristics of Solar UV Radiation in Gosan, Jeju)

  • 김영아;최우갑
    • 대기
    • /
    • 제27권3호
    • /
    • pp.291-300
    • /
    • 2017
  • The monthly-mean irradiance of ultra violet (UV)-B and UV-A observed from 2005 to 2014 and 2012 to 2014, respectively, at noon in Gosan, Jeju, South Korea are analyzed. We compare cloudiness, total ozone, visibility, and relative humidity with an emphasis on the four months from May to August (MJJA), which shows the largest UV radiation. While the incoming UV-B radiation at the top of the atmosphere in Gosan is the largest in June due to the small solar zenith angle, the observed surface UV-B shows an unexpected smaller value in June than those in May, July or August. In June, the meteorological conditions affecting Gosan are completely dominated by cloudiness and thus, frequent overcast seems to determine the minimum UV-B. Another important UV-determining factor is the total ozone, which exhibits a monotonic decrease during MJJA without agreeing to the characteristic feature of UV. The ratio of UV-B to UV-A is not generally influenced by cloudiness. Thus, the ratio is a useful indicator of atmospheric turbidity showing larger values for increasing visibility, except in June. A simple model has been used to estimate surface UV by using the observed ozone and visibility in the cloudless condition. The result shows that UV has the lowest value in June with small variation during MJJA. Model estimation also shows that the different characteristic features observed in July between surface UV-B and UV-A is the result of less absorption of UV-B by ozone than that of UV-A by a smaller amount of total ozone.

열형 적외선 센싱소자용 Mn-Ni-Co계 써미스터 박막 특성 평가 (Evaluations of Mn-Ni-Co type thermistor thin film for thermal infrared sensing element)

  • 전민석;최덕균
    • 한국결정성장학회지
    • /
    • 제13권6호
    • /
    • pp.297-303
    • /
    • 2003
  • rf magnetron sputtering법을 이용하여 Mn-Ni-Co계 써미스터 박막을 증착하였다. $300^{\circ}C$$Ar/O_2$ = 10/0에서, cubic spinel 상형성이 이루어졌으며 공정가스에 산소 첨가 시, cubic spinel 상은 열처리를 통해서도 형성되지 않았다. 써미스터 박막은 Mn, Ni, Co 성분 외 다른 이종 성분은 포함되어 있지 않았다. 써미스터 박막에 대한 적외선 반사 특성을 분석으로 증착된 박막은 일정 각도로 입사되는 적외선에 대해 비교적 높은 반사율을 가짐을 관찰할 수 있었다. DI water : $HNO_3$: HCI=60 : 30 : 10 vo1%에서 써미스터 박막의 식각 속도는 약 63 nm/min였다. 박막 써미스터의 B상수는 약 3500 K였으며 TCR은 약 -3.95%/K였다 전압감도는 약 108.5 V/W였으며 NEP와 specific detectivity는 각각 $5.1\times 10^{-7}$ W/$Hz^{-1/2}$ $0.2\times 10^6$cm $Hz^{1/2}$/W였다.

Folded Reflectarray를 이용한 고이득 94 GHz 모노펄스 안테나 (High-Gain 94 GHz Monopulse Antenna Using Folded Reflectarray)

  • 이한승;채희덕;전종훈;남상욱
    • 한국전자파학회논문지
    • /
    • 제19권1호
    • /
    • pp.87-94
    • /
    • 2008
  • 본 논문은 94GHz를 중심 주파수로 하며, 모노펄스 형식의 추적 레이다 시스템에 사용되는 folded reflectarray 안테나를 제안한다. 추적 레이다는 대부분 목표물로부터 반사되어 돌아온 반사 신호들을 비교하여 목표물을 찾으며, 모노펄스 형식에서는 이러한 신호들의 비교를 동시에 수행한다. 본 논문에서 제안한 모노펄스 형식의 folded reflectarray 안테나는 polarizing grid, reflectarray, 다중 모드 feed horn, 그리고 도파관으로 제작된 comparator로 이루어져 있다. 제작된 안테나는 다중 모드 feed horn과 comparator의 모노펄스 급전부에 의해 sum 모드, azimuth 모드, 그리고 elevation모드, 이렇게 세 개의 방사 패턴 형식을 나타낼 수 있다. 측정 결과, sum 패턴에서는 36dB, azimuth 패턴에서는 33.5dB, 그리고 elevation 패턴에서는 27.2 dB의 이득을 확인할 수 있었다

Wake effects of an upstream bridge on aerodynamic characteristics of a downstream bridge

  • Chen, Zhenhua;Lin, Zhenyun;Tang, Haojun;Li, Yongle;Wang, Bin
    • Wind and Structures
    • /
    • 제29권6호
    • /
    • pp.417-430
    • /
    • 2019
  • To study the wake influence of an upstream bridge on the wind-resistance performance of a downstream bridge, two adjacent long-span cable-stayed bridges are taken as examples. Based on wind tunnel tests, the static aerodynamic coefficients and the dynamic response of the downstream bridge are measured in the wake of the upstream one. Considering different horizontal and vertical distances, the flutter derivatives of the downstream bridge at different angles of attack are extracted by Computational Fluid Dynamics (CFD) simulations and discussed, and the change in critical flutter state is further studied. The results show that a train passing through the downstream bridge could significantly increase the lift coefficient of the bridge which has the same direction with the gravity of the train, leading to possible vertical deformation and vibration. In the wake of the upstream bridge, the change in lift coefficient of the downstream bridge is reduced, but the dynamic response seems to be strong. The effect of aerodynamic interference on flutter stability is related to the horizontal and vertical distances between the two adjacent bridges as well as the attack angle of incoming flow. At large angles of attack, the aerodynamic condition around the downstream girder which may drive the bridge to torsional flutter instability is weakened by the wake of the upstream bridge, and the critical flutter wind speed increases at this situation.

고속 활주선의 선형에 따른 저항 성능 및 규칙파 중 운동 성능 고찰 (Effects of Hull Form Variations on Resistance and Seakeeping Performance of Planing Hulls with and without Incoming Regular Waves)

  • 김동진;김선영;김성환;서정화;이신형
    • 대한조선학회논문집
    • /
    • 제51권5호
    • /
    • pp.369-379
    • /
    • 2014
  • Planing hull forms have significant influences on those hydrodynamic performances in calm water and in waves. Therefore, the hydrodynamic performance of a planing vessel should be predicted by model tests or theoretical calculations, and be confirmed whether it shows the performance requirements at the design stage. In this study, four planing hull forms are designed with the goal of the improvement of resistance and seakeeping performance, and 1/6.5 scale model tests are carried out in Seoul National University towing tank. The effects of design parameters such as length-to-beam ratio, deadrise angle and forebody shape on the hydrodynamic performance are investigated, based on model test results. Running attitude and resistance of model ships in calm water are also estimated by empirical formulae proposed by Savitsky (1964; 2007; 2012), and compared with the model test results. It is shown that calm water performance of non-prismatic planing hulls can be predicted well by Savitsky (2012)'s formula which improves the original Savitsky(1964/2007)'s formula by taking into account the variations of deadrise angles, and the actual angles between the hull bottom and the free surface.

A Numerical Study of Turbulent Flow Around a Twin-Skeg Container Ship Model with Appendages

  • Kim, Hyoung-Tae;Lee, Pyung-Kuk;Kim, Hee-Taek
    • Journal of Ship and Ocean Technology
    • /
    • 제10권4호
    • /
    • pp.12-23
    • /
    • 2006
  • In this paper, a numerical study is carried out to investigate the turbulent flow around a twin-skeg container ship model with rudders including propeller effects. A commercial CFD code, FLUENT is used with body forces distributed on the propeller disk to simulate the ship stem and wake flows with the propeller in operation. A multi-block, matching, structured grid system has been generated for the container ship hull with twin-skegs in consideration of rudders and body-force propeller disks. The RANS equations for incompressible fluid flows are solved numerically by using a finite volume method. For the turbulence closure, a Reynolds stress model is used in conjunction with a wall function. Computations are carried out for the bare hull as well as the hull with appendages of a twin-skeg container ship model. For the bare hull, the computational results are compared with experimental data and show generally a good agreement. For the hull with appendages, the changes of the stem flow by the rudders and the propellers have been analyzed based on the computed result since there is no experimental data available for comparison. It is found the flow incoming to the rudders has an angle of attack due to the influence of the skegs and thereby the hull surface pressure and the limiting streamlines are changed slightly by the rudders. The axial velocity of the propeller disk is found to be accelerated overall by about 35% due to the propeller operation with the rudders. The area and the magnitude of low pressure on the hull surface enlarge with the flow acceleration caused by the propeller. The propellers are found to have an effect on up to the position where the skeg begins. The propeller slipstream is disturbed strongly by the rudders and the flow is accelerated further and the transverse velocity vectors are weakened due to the flow rectifying effect of the rudder.