• Title/Summary/Keyword: Incoherent Hologram

Search Result 17, Processing Time 0.022 seconds

Hologram Generation of 3D Objects Using Multiple Orthographic View Images

  • Kim, Min-Su;Baasantseren, Ganbat;Kim, Nam;Park, Jae-Hyeung
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.269-274
    • /
    • 2008
  • We propose a new synthesis method for the hologram of 3D objects using incoherent multiple orthographic view images. The 3D objects are captured and their multiple orthographic view images are generated from the captured image. Each orthographic view image is numerically overridden by the plane wave propagating in the direction of the corresponding view angle and integrated to form a point in the hologram plane. By repeating this process for all orthographic view images, we can generate the Fourier hologram of the 3D objects.

Distance Measurement using Modified Triangular Interferometer (변형 삼각간섭 계를 이용한 거리계측)

  • 김수길;황보승
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.119-122
    • /
    • 2001
  • We derived the resolution of the modified triangular interferometer and described the analysis about distance measurement using the one. Also, to demonstrate the feasibility of distance measurement using the modified triangular interferometer, the incoherent hologram of a two-point source with depth and its numerical reconstruction were presented.

  • PDF

Numerical reconstruction of Incoherent Holography using the triangular interferometer (삼각형 간섭계를 이용한 Incoherent 홀로그래피의 수치적 재생에 관한 연구)

  • Bae, You-Seok;Lee, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.388-390
    • /
    • 1994
  • We are familiar with the holography in these days. For making holography the coherent sources like LASER are used in many fields. But coherent holography has many problems. Coherent holography needs many instrument for practical use like 3-D TV case. In solving the problem we use the non-coherent source. Nowadays many methods like conoscopic holo graphy using anisotropic crystal, shadow casting and interferometric systems are suggested. In this paper we make the hologram using the triangular interferometric systems. [1],[2],[3],[4]. We explain the afocal and double-afocal system which consists of the triangular interferometric system. The holography made in one point and two point cases is imaged on CCD camera and we handle the image data digitally for the reconstruction efficiently. In reconstructing the hologram the Fraunhofer diffraction theory is used. We adopt the rectangular aperture for the convenience of calculation. In the future we must reconstruct the perfect 3-Dimensional object by optical method. For this, we have many problems like resolution problem. We must solve these problem for perfect reconstruction.

  • PDF

Implementation of 2-D Incoherent Imaging using Hilbert Transform based on Two-Pupil Optical Heterodyne Scanning System (Two-Pupil 광학 헤테로다인 스캐닝 시스템 기반의 힐버트 변환을 활용한 2-D 인코히어런트 이미징 구현)

  • Kyung, Min-Gu;Doh, Kyu-Bong
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.240-246
    • /
    • 2012
  • The Hilbert transform, which has been hitherto discussed in coherent imaging, is for the first time investigated in the context of incoherent imaging. Because the Hilbert transform of the information is superposed coherently with the original light field. We present a two-pupil optical heterodyne scanning system and analyze mathematically the design of its two pupils such that the optical system can perform the Hilbert transform on incoherent objects. In this paper, we review and formulate the definition of an analytic signal of a function and from which we can obtain the Hilbert transform of the function. and we analyze the design of pupils so as to obtain the Hilbert transform and show some 2-D simulations. Computer simulation results of the idea clarify the theoretical results.

A study on the Theoretical Resolution of Conoscopic Holography (Conoscopic holography의 이론적인 해상도에 대한 연구)

  • Kim, Soo-Gil;Ko, MyungSook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.1-5
    • /
    • 2014
  • Conoscopic holography, which consists of two circular polarizers and an uniaxial crystal, is incoherent holographic technology for three-dimensional display and non-contact diagnosis. In this paper, we derive the longitudinal and lateral intensities from point-source hologram made by conoscopic holography. Also, the longitudinal and lateral resolutions of conoscopic holography will be obtained from the longitudinal and lateral intensities, respectively, according to Rayleigh criterion.

Total-internal-reflection Holographic Photo-lithography by Using Incoherent Light (비가간섭광을 이용한 내부전반사 홀로그래픽 리소그라피)

  • Lee, Joon-Sub;Park, Woo-Jae;Lee, Ji-Whan;Song, Seok-Ho;Lee, Sung-Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.334-338
    • /
    • 2009
  • Recently, with increasing demand for flat-panel display product, methods for large area patterning are required. TIR (total internal reflection) holographic photo-lithography isstudied as one of the methods of large area lithography. In conventional TIR holography, light sources for hologram recording and image reconstruction are coherent beams such as laser beams. If the image is reconstructed with an incoherent light source such a UV lamp, the image noise from the coherence of light will be reduced and the UV lamp will be a better light source for large area exposure. We analyzed the effect of spectral bandwidth and angular bandwidth of the light source in image reconstruction and verified image blurring with experiments. For large area patterning which has micro-scale line width, it is expected that TIR holographic photo lithography by UV lamp will become a low-noise and low-priced technique.

Technological development issues on geometric phase lens and its application of optical modulation (기하위상 렌즈의 개발 이슈 및 이의 광파 변조 응용)

  • Lee, Tae-Hyun;Lee, Su-Won;Hong, Keehoon;Choi, Kihong;Kim, Hak-Rin
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.557-560
    • /
    • 2020
  • 최근, 광소자에서 공간 변조되는 wavefront profile 특성을 광소자의 표면 단차 변화 없이 단일 두께 박막 상에서 자유로이 구현할 수 있는 기하위상 홀로그램 (geometric phase hologram) 기반의 optical component에 대한 관심이 증대되고 있다. 특히 이를 이용해 제작된 기하위상 렌즈 (geometric phase lens)는 dynamic phase의 공간적 차이에 의해 구현되던 기존 bulk optics 기반의 lens 대비 초박형으로 제작이 가능한 파장 선택적 flat optics 기술로써, 다초점 및 경량화를 요구하는 차세대 디스플레이 기술 (augmented reality 또는 AR, mixed reality 또는 MR) 및 광파변조 및 제어를 요구하는 홀로그래픽 카메라 분야에 대한 응용처로 많은 주목을 받고 있다. 이에 본 논문에서는 해당 기하 위상렌즈에 대한 원리 및 이에 따른 개발이슈 및 해결법에 대해 연구 하였으며, 이에 대한 응용처로 기하위상 렌즈의 편광에 따른 이중초점특성을 이용해, 기존 단일 초점 형성이 가능한 AR기기 대비, 다초점 형성이 가능한 switchable dual-depth 3D AR device를 compact한 모듈과 함께 구현하였다. 또한, 기하위상렌즈의 광파 변조 및 분리특성을 이용한 기하위상 렌즈기반의 자가간섭 홀로그래픽 시스템(GP-self-interference incoherent digital holographic, GP-SIDH)에 편광 이미지센서 적용과 함께 맞춤형 설계/제작된 기하 위상렌즈를 적용함으로써, 기존 GP-SIDH 시스템대비 안정적으로 실시간 복소 홀로그램 획득이 가능한 실시간 공간영상정보 획득용 GP-SIDH을 동영상 프레임으로 구현하였다.

  • PDF