• Title/Summary/Keyword: Inclusion complexes

Search Result 90, Processing Time 0.024 seconds

Comparison between Ursodeoxycholic Acid and Its ${\beta}-Cyclodextrin$ Inclusion Complex: in-vitro Dissolution, in-vivo Absorption and Choleretic Effect (우르소데옥시콜린산 및 이의 베타-시클로덱스트린 포접복합체간의 in-vitro 용출, in-vivo 흡수및 이담효과의 비교)

  • Lee, Seung-Yong;Chung, Youn-Bok;Han, Kun;Choi, Jung-Hyun
    • YAKHAK HOEJI
    • /
    • v.38 no.4
    • /
    • pp.372-378
    • /
    • 1994
  • Choleretic effect and absorption of ursodeoxycholic acid (UDCA) in rats were studied using UDCA alone and it's ${\beta}-cyclodextrin$ $({\beta}-CyD)$ inclusin complex (UDCA-IC). In spite of increase in solubility and dissolution rate, absorption of UDCA-IC was decreased compared with UDCA alone. Choleretic effect of UDCA-IC was also decreased. It looks that UDCA forms stronger inclusion complex with ${\beta}-CyD$ than any other drug or organic biological material. From this study, it was suggested that UDCA might be used as a new potential competing agent when inclusion complexes of drugs with ${\beta}-CyD$ were administered for the improvement of poor bioavailability.

  • PDF

Comparison of Physicochemical Properties between Ursodeoxycholic Acid and Chenodeoxycholic Acid Inclusion Complexes with ${\beta}-Cyclodextrin$ (우르소데옥시콜린산 및 케노데옥시콜린산의 베타시클로덱스트린 포접복합체의 물리화학적 특성비교)

  • Lee, Seung-Yong;Chung, Youn-Bok;Han, Kun;Shin, Jae-Young
    • YAKHAK HOEJI
    • /
    • v.38 no.3
    • /
    • pp.300-310
    • /
    • 1994
  • Physicochemical properties for the inclusion complex of chenodeoxycholic acid(CDCA) and it's $7{\beta}-hydroxy$ epimer ursodeoxycholic acid(UDCA) with ${\beta}-cyclodextrin({\beta}-CyD)$ were studied. The formation of the complex in the solid state were confimed by polarized microscopy and differential scanning calorimetry(DSC). Proton nuclear magnetic resonance$(^1H-NMR)$spectroscopy showed that CDCA and UDCA form an inclusion complex with ${\beta}-CyD$ in aqueous solution. The 1 : 1 stoichiometry of the complex was dextermined by the continuous variation method. From DSC and $^1H-NMR$ studies, there were not any differences between CDCA and UDCA. Complex of CDCA and UDCA showed increase in solubility and dissolution compared with CDCA and UDCA alone, respectively. Solubility pattern of UDCA complex was pH independent but, CDCA complex was like that of CDCA. Dissolution rate increased markedly in case of UDCA complex compared with CDCA complex, especially in acidic pH value.

  • PDF

Enhancement of β-cyclodextrin Production and Fabrication of Edible Antimicrobial Films Incorporated with Clove Essential Oil/β-cyclodextrin Inclusion Complex

  • Farahat, Mohamed G.
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.12-23
    • /
    • 2020
  • Edible films containing antimicrobial agents can be used as safe alternatives to preserve food products. Essential oils are well-recognized antimicrobials. However, their low water solubility, volatility and high sensitivity to oxygen and light limit their application in food preservation. These limitations could be overcome by embedding these essential oils in complexed product matrices exploiting the encapsulation efficiency of β-cyclodextrin. This study focused on the maximization of β-cyclodextrin production using cyclodextrin glucanotransferase (CGTase) and the evaluation of its encapsulation efficacy to fabricate edible antimicrobial films. Response surface methodology (RSM) was used to optimize CGTase production by Brevibacillus brevis AMI-2 isolated from mangrove sediments. This enzyme was partially purified using a starch adsorption method and entrapped in calcium alginate. Cyclodextrin produced by the immobilized enzyme was then confirmed using high performance thin layer chromatography, and its encapsulation efficiency was investigated. The clove oil/β-cyclodextrin inclusion complexes were prepared using the coprecipitation method, and incorporated into chitosan films, and subjected to antimicrobial testing. Results revealed that β-cyclodextrin was produced as a major product of the enzymatic reaction. In addition, the incorporation of clove oil/β-cyclodextrin inclusion complexes significantly increased the antimicrobial activity of chitosan films against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella Typhimurium, Escherichia coli, and Candida albicans. In conclusion, B. brevis AMI-2 is a promising source for CGTase to synthesize β-cyclodextrin with considerable encapsulation efficiency. Further, the obtained results suggest that chitosan films containing clove oils encapsulated in β-cyclodextrin could serve as edible antimicrobial food-packaging materials to combat microbial contamination.

Utilization of Supercritical Carbon Dioxide for the Preparation of 2-Hydroxypropyl-β-Cyclodextrin Microparticles and Their Inclusion Complexes with Ibuprofen (초임계 이산화탄소를 이용한 2-Hydroxypropyl-β-Cyclodextrin 미립자와 이부프로펜과의 포접복합체 제조)

  • Ryu, Jong-Hoon
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.212-218
    • /
    • 2013
  • The microparticles of 2-hydroxypropyl-${\beta}$-cyclodextrin (HP-${\beta}$-CD) were prepared using aerosol solvent extraction system (ASES) by employing supercritical carbon dioxide as an antisolvent, The effects of various process parameters such as temperature, pressure, solution concentration and solution flow rate on the formation of HP-${\beta}$-CD microparticles were investigated. The HP-${\beta}$-CD microparticles prepared by the ASES process were observed to consist of agglomerates of nano-sized (50-200 nm) particles. When an aqueous solution of ethanol was used as a solvent for HP-${\beta}$-CD, the HP-${\beta}$-CD particles were found to be spherical in shape and to become larger as the water content increased. It was confirmed that the micronization of HP-${\beta}$-CD using the ASES process could enhance the inclusion efficiency of ibuprofen/HP-${\beta}$-CD complexes significantly.

Solubility and In vivo Absorption Enhancement of Diclofenac Sodium by ${\beta}-Cyclodextrin$ Complexation (${\beta}$-시클로덱스트린과의 포접에의한 디플로페낙나트륨의 용해도 및 생체흡수율 증가)

  • Lee, Kyung-Tae;Kim, Jong-Hwan;Kim, Joo-Il;Kim, Seung-Jo;Seo, Hee-Kyoung;Seo, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.169-174
    • /
    • 1996
  • Inclusion complexes of diclofenac sodium with ${\beta}-cyclodextrin$ were prepared in aqueous solution, alkaline solution and solid phase. The interaction of diclofenac sodium with ${\beta}-cyclodextrin$ in pH 9.0 alkaline solution was evaluated by the solubility method and the instrumental analysis such as thermal analysis, infrared spectroscopy, X-ray diffractometry. The solubility of diclofenac sodium was increased linearly with the increase in the concentration of ${\beta}-cyclodextrin$up to 0.15 mol and showed that the aqueous solubility rate of diclofenac sodium was significantly increased by complex with ${\beta}-cyclodextrin$. The optimum composition of this complex was one molecule of ${\beta}-cyclodextrin$ included 1.59 molecular weight of diclofenac sodium as a guest molecule. The pharmacokinetic parameters of the diclofenac sodium and the complex with ${\beta}-cyclodextrin$ were studied in rats by oral route. $T_{max}$ between drug alone and inclusion complex showed significant difference to be 120 minute and 20 minute respectively. Both of $C_{max}$ and AUC of inclusion complex was about 40% higher than drug alone. It is estimated from the data in this study that complexation of diclofenac sodium with ${\beta}-cyclodextrin$ increased the absorption rate and improved the bioavalability of the diclofenac sodium by the formation of a water-soluble complexes.

  • PDF

Anti-Proliferative Effects of β-Cyclodextrin Inclusion Complexes with Coumarinolignans from Acer mono (고로쇠 Coumarinolignan의 β-Cyclodextrin 포접화합물 제조 및 암세포증식 억제활성)

  • Yim, Soon-Ho;Jung, Da-Woon;Williams, Darren R.;Geckeler, Kurt E.;Kim, Kyung Keun;Shin, Boo Ahn;Lee, Ik-Soo;Kim, Huyn Jung
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.2
    • /
    • pp.133-139
    • /
    • 2015
  • Two coumarinolignans, cleomiscosins C (1) and D (2) were isolated from the heartwood of Acer mono, together with four compounds, 5-O-methyl-(E)-resveratrol-3-O-${\beta}$-D-glucopyranoside (3), 5-O-methyl-(E)-resveratrol-3-O-${\beta}$-D-apiofuranosyl-(1$\rightarrow$6)-${\beta}$-D-glucopyranoside (4), scopoletin (5), and (E)-resveratrol-3-O-${\beta}$-D-glucopyranoside (6). Of them, cleomiscosins C (1) and D (2) were applied to preparing inclusion complex molecules with ${\beta}$-cyclodextrin (${\beta}$-CD) to improve the very poor solubility in cell media. The CD complexes of 1 and 2 exhibited an enhancement of water solubility which is feasible to measure their cytotoxicity using a spectrophotometer in a cell-based assay. Anti-proliferative activity of these complex molecules was successfully estimated on HCT116 human colon cancer cells, and cleomiscosin D (2) showed anti-proliferative effects at the concentration of 1.95~31.2 ${{\mu}g}$/mL in a dose-dependent manner.

Stability Evaluation of Vitamin-C Inclusion Complexes Prepared using Supercritical ASES Process (초임계 ASES 공정으로 제조된 Vitamin-C 포접복합체의 안정성 평가)

  • Yang, Jun-Mo;Kim, Seok-Yun;Han, Ji-Hyun;Jung, In-Il;Ryu, Jong-Hoon;Lim, Gio-Bin
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.157-163
    • /
    • 2006
  • A supercritical fluid process, called aerosol solvent extraction system(ASES), is especially suitable to the pharmaceutical, cosmetic and food industries due to its environmentally-friendly, non-toxic and residual solvent-free properties. In particular, the application of the ASES process to the processing of thermo-labile bioactive compounds has received attention of many scientists and engineers because of its low-temperature operating conditions. Unstable substances such as Vitamin-C and Vitamin-A can be effectively protected from degradation during the preparation process, because the ASES process is free from oxygen and moisture. In this study, Vitamin-C was formulated with 2-hydroxypropyl-${\beta}$-cyclodextrin (HP-${\beta$-CD) for enhancement of Vitamin-C stability and bioavailability using the ASES process. To investigate the influence of the preparation process on the stability of Vitamin-C, Vitamin-C/HP-${\beta}$-CD inclusion complexes were prepared using both conventional solvent evaporation method and ASES process, and stored in a 50 mM phosphate buffer solution of pH 7.0 at $25^{\circ}C$ for 24 hours. From the experimental results, the stability of the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared from the ASES process was found to be much higher than that of pure Vitamin-C and the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared by the solvent evaporation method. The stability of Vitamin-C was observed to increase with the decrease of temperature at a constant pressure or with the increase of pressure at a constant temperature.

Determination of Stability Constants for $\beta$-Blocker and Carboxymethyl-$\beta$-cyclodextrin Complexes by Capillary Electrophoresis (모세관 전기영동법을 이용한 베타차단제-시클로덱스트린 포접화합물의 안정도상수 결정)

  • 박경래;임환미;뉴엔티퐁;김경호;강종성
    • YAKHAK HOEJI
    • /
    • v.47 no.4
    • /
    • pp.200-205
    • /
    • 2003
  • The stability constants for the inclusion complexes between carboxymethyl-$\beta$-cyclodextrin (CM-$\beta$-CD) and five $\beta$-blockers, such as atenolol (ATE), bisoprolol (BIS), metoprolol (MET), pindolol (PIN) and propranolol (PRO) were determined by capillary electrophoresis. The magnitude of stability was decreased as following order; PRO>MET>BIS>ATE>PIN. Among them PRO showed the highest affinity towards CM-$\beta$-CD with stability constants of 383 and 371 $M^{-l}$ for (R)- and (S)-enantiomer, respectively. PIN enantiomers showed the lowest stability towards CM-$\beta$-CD, while the selectivity between (R)- and (S)-enantiomer was higher than any other tested $\beta$-blocker.r.

Phamaceutical Studies on the Drug (III) -Enhancement of Dissolution and Stability of Sulfamethoxazole by ${\beta}-Cyclodextrin$ Complexation- (약물의 약제학적 연구(제 3보) -${\beta}-$시클로덱스트린과의 복합체 형성에 의한 설파메톡사졸의 용출 및 안정성 향상-)

  • Lee, Hyeon-Jong;Kim, Soo-Uck;Seo, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.4
    • /
    • pp.181-186
    • /
    • 1988
  • Inclusion complex of sulfamethoxazole with ${\beta}-cyclodextrin$ was prepared by freeze-drying method in molar ratios of 1:1, 1:1.25, 1:1.5 and 1:1.75, and the complex formation was identified by ultraviolet and infrared spectroscopies, powder X-ray diffractometry and differential scanning calorimetry. Dissolution rate and solid state stability of the complex were investigated in comparison with those of sulfamethoxazole powder and the physical mixture of sulfamethoxazole with ${\beta}-cyclodextrin$. As a result, the dissolution rate and the stability of solid complexes in various relative humidity conditions increased more remarkably than those of sulfamethoxazole powder and physical mixture. But the difference according to molar ratio of the complex was not recognized.

  • PDF

Influence of Various Cyclodextrins on the Stability of Hydrocortisone 17-Butyrate in Aqueous Solution

  • Chun, In-Koo;Kim, Bo-Young
    • Archives of Pharmacal Research
    • /
    • v.15 no.2
    • /
    • pp.176-183
    • /
    • 1992
  • The stabilizing effects of $\alpha$-$\beta$-$\gamma$- and dimethyl-$\beta$-cyclodextrins $(\alpha$-, $\beta$-, $\gamma$- and DM-$\beta-$-CyDs) on the degradation of hydrocortisone 17-butyrate (HC-17B) in aqueous solution was investigated. Hc-17B underwent a facile hydroxide ion-catalyzed rearrangement to the less active 21-butyrate ester by the apparent first-order kinetics, and maximum stability of HC-17B was obtained at around pH 4.0. The stability of HC-17B was increased by inclusion complexation with $\alpha$-, $\gamma$- and DM-$\beta$-CyD in the pH range of 2.0-8.0 examined, whereas $\beta$-CyD accelerated the degradation of HC-17B at the pH higher than 5.0. The effects of ionic strength, solvent, temperature and CyD concentration were also investigated. Stability constants and apparent degradation rate constants of HC-17B-$\gamma$-CyD and HC-17B-DM-$\beta$-CyD complexes were determined kinetically on the basis of 1:1 complexation. The results suggested that the inclusion complexation with $\gamma$-CyD or DM-$\beta$-CyD was most useful means to enhance the stability of the steroid.

  • PDF