• Title/Summary/Keyword: Inclusion complexes

Search Result 90, Processing Time 0.027 seconds

Preparation and Characterization of Inclusion Complex between β-Cyclodextrin and Polylactic Acid (β-Cyclodextrin과 Polylactic Acid간의 포접화합물 제조 및 특성 분석)

  • Nan, Song Ya;Fang, Zhou Yu;Jun, Zhen Wei
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.261-267
    • /
    • 2015
  • The inclusion complexes (ICs) between polylactic acid (PLA) and ${\beta}$-cyclodextrin (CD) were prepared by co-precipitation method in this work. The orthogonal experiments were designed to investigate the influence of different factors on the formation of inclusion complexes. The results suggested that the optimum scheme of inclusion compounds could be obtained when the feeding ratio of CD to PLA (wt%) was 20:1, stirring speed was 6 kr/min and the stirring time was 30 min. The structures and properties of the inclusion complexes were characterized by $^1H$ NMR, FTIR, DSC, FT-Raman, XRD and TGA. The DSC results demonstrated that the crystallization behavior of the inclusion complexes nearly disappeared. It was found that ${\beta}$-CD-PLA inclusion complex had a better thermal stability compared with the neat PLA. The model of the inclusion complexes was proposed on the basis of XRD, $^1H$ NMR and DSC results.

Electrochemical and Raman Spectroscopy Analysis for D- and L-Tryptophan-b-Cyclodextrin Inclusion Complexes

  • Jeong, Yu-Ra;Lee, So-Ra;Son, Pyeong-Soo;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.451-460
    • /
    • 2015
  • An enantioselective recognition of D- and L-tryptophan (Trp)-b-cyclodextrin (CD) inclusion complex was performed using electrochemical and FT-Raman spectroscopic analysis. From the electrochemical analysis, the selectivity coefficient ($K_{DL}$) of b-CD inclusion complexes was found higher than that of the D- and L-Trp in phosphate buffered saline (PBS, pH=7.0) solution. The percentage of enantioselectivity ($I_{%{ee}}$) for peak current of D-Trp-b-CD inclusion complexes was observed higher than that of L-Trp-b-CD inclusion complexes in PBS solution. From Raman spectroscopy, chemical shift difference (D, $cm^{-1}$) for the C=C stretch, ring vibration, and ring breathing of D-Try-b-CD inclusion complex were observed higher than that of L-Trp-b-CD inclusion complex. The electrochemical and Raman spectroscopic analyses were found very useful for chiral detection of racemic amino acid in the presence of b-CD.

Bioavailability Studies on Suspension of Inclusion Complexes of Piroxicam with Cyclodextrins (Piroxicam-Cyclodextrin 포접화합물의 현탁제에 대한 생체내 이용율의 연구)

  • Park, Sun Hee;Lee, Chang Hoon;Choi, Young Wook;Park, Gee Bae;Kim, Johng Kap
    • Korean Journal of Clinical Pharmacy
    • /
    • v.1 no.1
    • /
    • pp.9-14
    • /
    • 1991
  • Inclusion complexes of piroxicam with $\alpha,\;\beta\;and\;\gamma- cyclodextrins$ were prepared and suspended to enhance the bioavailability of piroxicam. A quantitative analysis was employed HPLC for the determination of piroxicam in the rabbit serum after a single oral dose in suspension of piroxicam and each of inclusion complexes of piroxicam with $\alpha,\;\beta\;and\;\gamma- cyclodextrins$, respectively. The bioavailability and serum level of piroxicam exhibited the highest in piroxicam clathrated $\beta-cyclodextrin$ than both piroxicam and the other complexes administered. and the total area under the curve of serum concentration versus time for their inclusion complexes were larger than that of piroxicam.

  • PDF

Enhancement of Solubility and Disolution Rate of Poorly Water-soluble Naproxen by Coplexation with $2-Hyldroxypropylo-{\beta}-cyclodextrin$

  • Lee, Beom-Jin;Lee, Jeong-Ran
    • Archives of Pharmacal Research
    • /
    • v.18 no.1
    • /
    • pp.22-26
    • /
    • 1995
  • The solubility and dissolution rate of naproxen (NPX) complexed with 2-hydroxypropyl-.betha.-cyc-lodextrin (2-HP.betha.CD) using coprecipitation, evaporation, freeze-drying and kneading method were investigated. Solubility of NPX linearly increased (correlation cefficient, 0.995) as $2-HP\betaCD$ concentraction increased, resutling in $A_l$ type phase solubility curve. Inclusion complexes prepared by four different methods were compared by different methods were compared by dfferential scanning calorimetry(DSC). The NPX showed sharp endothemic peak around $156^{\circ}C$ but inclusion complexes by evaporation, freeze-drying and kneading method showed very broad peak without distinct phase transtion temperature. In contrast, inclusion complex prepared by coprecipitation method resulted in detectable peak around $156^{\circ}C$ which is similar to NPX, suggesting incoplete formation of indusion co plex. Dissolution rate of inclusion complexes prepared by evaporation, frezz-drying and kneding except coprecipitation method was largely enhanced in the simultaed gastric and intestinal fluid when compared to NPX powder and commercial $NA-XEN^\registered$tablet. However, about 65% of NPX in gstric fluid. in case of inclusion complex prepared by coprecipitation method, formation of inclusion complex appeared to be incoplete, resulting in no marked enhancement of dissolution rate. From these findings, inclusion complexes of poorly water-soluble NPX with $2-HP\betaCD$ were useful to increase soubility and dissolution rate, resting in enhancement of bioavailability and minimization of gastrointestinal toxicity of drug upon oral administration of inclusion complex.

  • PDF

Dissolution and Stability Enhancements of Trimethoprim by ${\beta}-Cyclodextrin$ Polymer Inclusion Complexation (트리메토프림과 ${\beta}$-시클로덱스트린 고분자 간의 포접복합체 형성에 의한 용출 및 안정성 향상)

  • Kim, Hyung-Tae;Park, Kyung-Ock;Seo, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.2
    • /
    • pp.105-113
    • /
    • 1992
  • To improve the solubility and dissolution rate of trimethoprim (TMP), which is slightly soluble drug, its inclusion complexes were prepared and studied in this experiment. Inclusion complexes of TMP with ${\beta}-cyclodextrin$ and ${\beta}-cyclodextrin$ polymer (CDPS) were prepared according to Fenyvesi method. These were compared with TMP and its physical mixture with CDPS. Water, diluted hydrochloric acid and phosphate buffer solution were used as dissolution media. And accelerated stability test was studied at $50,\;70\;and \;80^{\circ}C$. It was found that solubility and dissolution rate of inclusion complexes were increased in water. Especially, the solubility and dissolution rate of TMP was found to be markedly increased by inclusion complexation with CDPS. In stability test, ${\beta}-cyclodextrin$ inclusion complexes were more or less stable than TMP alone. This tendency was not led in CDPS. Consequently, CDPS was useful in increasing dissolution rate and stability of TMP.

  • PDF

Inclusion Complexation of Chlorpropamide with Cyclodextrins (클로로프로파미드와 싸이클로덱스트린과의 포접 화합물에 관한 연구)

  • 정경혜;김길수;구영순
    • YAKHAK HOEJI
    • /
    • v.30 no.2
    • /
    • pp.87-95
    • /
    • 1986
  • Inclusion complexation of $\alpha$-cyclodextrin($\alpha$-CD), $\beta$-cyclodextrin($\beta$-CD) and tri-O-methyl-$\beta$-cyclodextrin(tri-O-methyl-$\beta$-CD) with chlorpamide(CPA) in aqueous solution and in the solid state were studied by the solubility method, spectroscopy (UV, IR), differential scanning calorimetry (DSC) and powder X-ray diffractometry, and all their molar ratios were found to be 1:1. The solid complexes of CPA with three kinds of cyclodextrins were prepared by a freezedrying method, and their dissolution behaviors were examined. As a result, the release of CPA from the inclusion complexes was significantly improved. The intrinsic dissolution rate of CPA in cyclodextrin inclusion complexes was about 51 times ($\alpha$-CD inclusion complex) and 12 tmies ($\beta$-CD inclusion complex) larger than that of intact CPA.

  • PDF

Improvement of Solubility and Dissolution of Ketoconazole by Inclusion with Cyclodextrin (시클로덱스트린과의 포접에 의한 케토코나졸의 용해성 및 용출 증가)

  • Park, Gee-Bae;Ann, Hong-Jik;Chang, Young-Soo;Seo, Bo-Youn;Lee, Kwang-Pyo
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.2
    • /
    • pp.85-94
    • /
    • 1994
  • Inclusion complexes of ketoconazole (KT) with ${\alpha}-$, ${\beta}-cyclodextrin$ (CD) and dimethyl-${\beta}-cyclodextrin$ $(DM{\beta}CD)$ in a molar ratio of 1:2 were prepared by freeze-drying and solvent evaporation methods. The interactions of KT with ${\alpha}-CD$, ${\beta}-CD$ and $DM{\beta}CD$ in aqueous solution and in solid state were investigated by solubility study, infrared (lR) spectroscopy and differential scanning calorimetry (DSC). The stability constant of $KT-DM{\beta}CD$ inclusion complex (lC) was found to be the largest among three inclusion complexes. Clear differences in IR spectra and DSC curves were observed between inclusion complexes and physical mixtures (PM) of KT-CDs. It was also shown by IR spectra and DSC curves that solvent evaporation method might be. superior to the freeze-drying method in preparing the inclusion complexes of KT-CDs. The dissolution rate of KT was markedly increased by inclusion complex formation with CDs in the buffer solution at pH 4.0 and pH 6.8. The mean dissolution time (MDT,min), which represents the rapidity of dissolution, was in the order of $KT-DM{\beta}CD$ IC (3.20) < $KT-{\beta}-CD$ IC (4.36) < $KT-{\alpha}-CD$ IC (6.99) < $KT-{\alpha}-CD$ PM (17.46)< $KT-{\beta}-CD$ PM (19.36) < $KT-{\beta}-CD$ PM (28.53). The dissolution rates of KT-CD ICsprepared by solvent evaporation method were faster than those of KT-CD ICs prepared by freeze-drying method.

  • PDF

Preparation and Evaluation of Inclusion Complex of Lansoprazole with 2-HP-β-Cyclodextrin and Meglumine (2-HP-β-시클로덱스트린과 메글루민을 이용한 란소프라졸의 포접화합물 제조 및 평가)

  • Lee, Jung-Woo;Kim, Jung-Su;Chang, Hye-Jin;Lee, Gye-Won;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.4
    • /
    • pp.269-274
    • /
    • 2004
  • To enhance the solubility and stability of lansoprazole (LAN), new proton pump inhibitor, we were prepared various molar ratio of inclusion complex with $2-hydroxypropyl-{\beta}-cyclodextrin$ (HPCD) and organic alkali agent, meglumine (MEG). Inclusion complex formation of LAN with HPCD was investigated by Differential Scanning Calorimetry and X-ray diffractometry. The aqueous solubilities of inclusion complexes, and the stabilities of 1:4 and 1:5 inclusion complexes in aqueous solutions containing different concentrations of MEG were examined. The stability of 1:5 LAN-HPCD inclusion complex containing MEG, which was equaled to amount of LAN, was performed in 0.9% NaCl and 5% dextrose solution. The formation of inclusion complex of LAN with HPCD was $A_L$ type and the molar ratio of complex was 1:1. The stability constant was $41.557\;M^{-1}$. As molar ratio of LAN to HPCD was increased, solubility of inclusion complex was increased. 1:5 LAN-HPCD inclusion complex was more stable than 1:4 LAN-HPCD inclusion complex. And as contained MEG amount in LAN solution was increased, stability of 1:4 and 1:5 LAN-HPCD inclusion complexes was improved. Also stability of 1:5 LAN-HPCD-MEG inclusion complex in 0.9% NaCl solution and 5% dextrose solution was similar to it in water at room temperature, but it was unstable at $40^{\circ}C$.

Antioxidant, anti-inflammatory, and antimicrobial activity of hesperetin and its cyclodextrin inclusion complexes (헤스페레틴(Hesperetin)과 사이클로덱스트린(Cyclodextrin) 포접 복합체의 항산화, 항염증, 항균 활성 )

  • Sung-Sook Choi;Kyung-Ae Lee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.988-1000
    • /
    • 2023
  • Hesperetin(HT) is a potent antioxidant flavonoid aglycone derived from hesperidin(HD). The antioxidant, anti-inflammatory, and antimicrobial activities of HT and its cyclodextrin(CD) inclusion complexes were compared in vitro. HT was prepared by enzymatic hydrolysis of HD, and HT/CD complexes were prepared using 𝛽-cyclodextrin(𝛽-CD) and hydroxypropyl-𝛽-cyclodextrin(HP-𝛽-CD) by solvent co-evaporation method. The solubility of the HT/HP-𝛽-CD inclusion complex increased 93.5-fold compared to HT, and the solubility of HT/𝛽-CD increased 22.5-fold. The HT/HP-𝛽-CD inclusion complex showed a similar effect as HT on radical scavenging activity in antioxidant assays, whereas the HT/𝛽-CD inclusion complex showed slightly lower activity than HT. Cytotoxicity was low in the following order; HT/HP-𝛽-CD, HT/𝛽-CD, and HT in murine macrophage RAW264.7 cells. Treatment with HT and HT/CD inclusion complexes reduced the levels of inflammatory mediators such as nitric oxide(NO), tumor necrosis factor-𝛼(TNF-𝛼) and interleukin-6(IL-6) in the cells. HT and HT/HP-𝛽-CD inclusion complex were more effective than HT/𝛽-CD inclusion complex at relatively low concentrations. Inhibitory effects were tested on skin-pathogenic bacteria, Staphylococcus aureus and Pseudomonas aeruginosa, and they showed an antimicrobial effect on S. aureus in the order of HT = HT/HP-𝛽-CD > HT/𝛽-CD, but they did not show any significant inhibitory effect on P. aeruginosa. In conclusion, HT, the aglycone form of HD, and its CD inclusion complexes showed various biological activities. HT/HP-𝛽-CD inclusion complex, which is the highly soluble form of HT, showed relatively higher activity compared to HT/𝛽-CD inclusion complex.

Pharmaceutical Studies on the Inclusion Complexes of Non-Steroidal Antiinflammatory Drugs with ${\beta}-Cyclodextrin$ (I) (비(非)Steroid 성소염약물(性消炎藥物)과 ${\beta}-Cyclodextrin$과의 Inclusion Complex에 관(關)한 약제학적(藥劑學的) 연구(硏究) (제1보)(第一報))

  • Han, Kun;Lee, Min-Hwa;Kim, Shin-Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.13 no.1
    • /
    • pp.10-22
    • /
    • 1983
  • The interactions of ${\alpha}-cyclodextrin({\alpha}-CyD)$ and ${\beta}-cyclodextrin({\beta}-CyD)$ with several non-steroidal antiinflammatory drugs were studied on the effects of ${\alpha}-$ and ${\beta}-CyD$ on the solubility of the drugs in aqueous medium. Indoprofen, niflumic acid, alclofenac, and naproxen were chosen as representatives of antiinflammatory drugs. The solubility of all drugs studied increased with the addition of ${\beta}-CyD$, while not with glucose or ${\alpha}-CyD$. The increase of the solubility with ${\beta}-CyD$ was considered due mainly to the formation of inclusion complexes between ${\beta}-CyD$ and drugs. From the solubility data, the apparent stability constants K of the complex could be calculated. Ultraviolet absorption and circular dichroism confirmed the inclusion of indoprofen, niflumic acid and naproxen with ${\beta}-CyD$ in the molar ratio of 1 : 1. Inclusion complexes in solid powder form were obtained by the freeze-drying method and the inclusion formation was confirmed again by infrared, diffential thermal analysis, and X-ray diffraction measurements.

  • PDF