• 제목/요약/키워드: Incineration capacity

검색결과 37건 처리시간 0.02초

사업장폐기물의 순산소 소각기술 (Polymer Waste Incineration by Oxygen Enriched Combustion)

  • 한인호;최광호;정진우
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.132-139
    • /
    • 2000
  • Oxygen enriched incineration can increase the incineration capacity for wastes and dramatically reduce air pollutant emissions such as CO and dioxine by the allowing complete combustion of wastes in incinerator. Furthermore, this technology is proven to have many benefits including an energy-saving, cost-effective, and versatile application for diverse wastes compared with the conventional air incineration technology. The reduced pollutant emissions in flue gas and higher incineration efficiency are also available when the oxygen enriched air is used for the high temperature incineration systems. On the basis of the experimental results the oxygen enrichment system is successfully applied to the rotary kiln incinerator for industrial wastes. The oxygen enriched incineration system could be allowed more compact design of incinerator and flue gas treatment system due to both increasing incineration capacity and reducing flue gas volume. Therefore, oxygen enriched incineration technology is becoming highlighted in the waste incinerator which strongly require more stable efficiency and environmentally friendly and safe operationPut Abstract text here.

  • PDF

생활폐기물 소각시설의 운영 실태 분석을 통한 에너지회수 효율 개선방안 검토 (A Study on Improvement Measures of Energy Recovery Efficiency through Analysis of Operational Status of Municipal Solid Waste Incineration Facilities)

  • 박상진;배재근
    • 한국폐기물자원순환학회지
    • /
    • 제35권8호
    • /
    • pp.762-769
    • /
    • 2018
  • This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.

폐기물 발생량 변화 예측에 따른 소각시설 운영에 관한 연구 (Research on Managing Incineration Facility according to Prediction of Change in Amount of Waste)

  • 하상안
    • 유기물자원화
    • /
    • 제20권1호
    • /
    • pp.23-30
    • /
    • 2012
  • 본 연구는 향후 최적 소각용량의 산정에 관해 재평가가 요구되고 있는 실정에서 반입되는 폐기물 발생량, 발열량 증가 및 B시 구역별 유동인구 변화 등을 고려하여 소각 사업소의 최적 가용용량을 예측하고, 예측된 가용용량을 기초로 하여 각 소각 사업소 별 처리량 대안에 대해 연구하는 게 목적이다. B시의 과거 인구추이를 바탕으로 인구변화량을 예측한 결과 전체 인구는 감소추세에 있으나, 일부 지역에 따라서는 아파트 단지 증가 등으로 인구 집중 현상이 나타나 현재와 비슷할 것으로 판단된다. 또한 인구예측을 통한 폐기물 발생량 예측 시 인구의 감소에 의한 폐기물 발생량은 감소할 것으로 판단되지만, 총 폐기물 발생량 중 가연성분 발생량은 증가할 것으로 예측되어 가연성 성분 및 소각 처리량은 D 소각 사업소를 제외하고는 적정할 것으로 예측된다. 따라서 현재 D소각 사업소의 소각율은 72.7%로 전국 소각비율 59.1%보다는 높지만 향후 소각량 확보를 위하여 B시의 MBT시설의 잔재폐기물 및 RDF 회수 잔재물 등과의 혼재 소각과 하수슬러지 및 음식물 쓰레기의 혼재소각이 필요하다고 판단되어지며 2015년 이후 D 소각 사업소를 폐쇄한다고 가정하였을 때는 각 소각장과의 거리와 가용할 수 있는 소각장 규모를 파악하여 경제성에서 가장 적합한 연동구역에 운반(연동제)하여 운영하는 방법이 경제적일 것으로 예측된다. 이에 D 소각 사업소의 경우는 새로운 소각시설 설치에 따른 주민불편 및 사회적 피해를 고려하여 폐수처리장 통합연계 시스템 구축에 따라 폐기물과 혼재 처리할 수 있는 장래의 여유 소각을 할 수 있는 시설 확보 측면에서 2020년까지 운영이 필요하고, H나 M 소각 사업소는 적정 소각량이 감소하는 경우 3개 소각시설이 운휴 기간이 없이 운영되기 위해서 2기를 확보하고 단위사업별 1기 단위로 6개월씩 단위 운영 병행제로 하는 관리방안의 구상도 해결방안이라고 판단되어 진다.

도시쓰레기와 유기성 하수 슬러지 혼합소각에 관한 연구 (Study on Co-incineration of Municipal Solid Waste and Organic Sludges)

  • 정종수;진성민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.238-244
    • /
    • 2005
  • This study performs the pilot-plant experiments to evaluate the effect of the oxygen enrichment on the co-incineration of municipal solid waste and organic sludge from a wastewater treatment facility. The design capacity of the stoker-type incinerator pilot-plant is 150 kg/h. Combustion chamber temperatures were measured as well as the stack gas concentrations, i.e., NOx, CO, and the residual oxygen. The maximum ratio of organic sludge waste to the total waste input is 30%. Also the oxygen-enriched air with 23% of oxygen in supplied air is used for stable combustion. As the co-incineration ratio of the sludge increased up to 30% of the total waste input, the primary and the secondary combustion chamber temperature was decreased $to900^{\circ}C$ (primary combustion chamber), $750^{\circ}C$(secondary combustion chamber), respectively, approximately $200^{\circ}C$ below the incineration temperature of the domestic waste only (primary: $1,100^{\circ}C$, secondary: $950^{\circ}C$). However, if the supplied air was enriched to 22% oxygen content in air, the incinerator temperature was high enough to burn the waste mixture with 30% sludge, which has the heating value of 1,600 kcal/kg.

  • PDF

서울시 일반폐기물의 통합적 관리체계에 관한 연구 (A Study on the Integrated Management System of Municipal Solid Waste from Seoul Metropolitan City)

  • 우세홍;홍상균
    • 한국환경보건학회지
    • /
    • 제19권4호
    • /
    • pp.51-58
    • /
    • 1993
  • The integrated solid waste management for Seoul Metropolitan city can be established on the basis of the following hierarchy of priorities: 1. Efforts for source reduction should be propelled by both government and citizens to achieve the effects of resource conservation. The adequate production and consumption which are environmentally amenable and sustainable can be induced by the reasonable imposition of deposit money for waste treatment to one-time use products. To accomplish source reduction effectively, the induction of legal and institutional regulation of producer and consumer participation is requisite. 2. For resource recovery, wastes generated should be recycled as far as practicable. Community residents are responsible to separate discharge, the authorities concerned have responsibility of separate collection, and recycling industry should be assissted through tax reduction and financing. Resource separation facilities can be constructed at Kimpo Metropolitan landfill site for wastes not separately collected due to some unavoidable circumstances. 3. Garbage should be composted. Garbage is uneconomical for incineration, because it has high moisture content and low calorie, thus there is no reason for the incineration of garbage even though garbage is classified into combustibles. Composting facilities can be located at sites which are not densely populated and easily accessible to transportation, for example, Kimpo Metropolitan landfill site. Compost produced can be managed by the authorities for the use of fertilizer to a green tract of suburban land and farms. 4. Nonhazardous combustible wastes not recyclable can be utilized for thermal recovery at the incinerators which are completely equipped with pollution control devices. According to the trend of local autonomy and the equity principle of local autonomous entities, incineration facilities of minimal capacity required can be constructed at each districts of Seoul Metropolitan city which have organized local assembly. In case of Yangcheon district, the economically combustible waste quantity is about 260 tons/day which exceeds 150 tons/day, the incineration capacity of existing facility. But, from now on, waste quantity can be reduced substantially by the intensive efforts of citizens for source reduction and recycling and the institutional support of administrative organizations. Especially, it is indispensable for the government to constitute institutional and technological bases that can recycle paper and plastics form 43% of waste generated. A good time for constructing of incineration facilities for municipal solid waste can be postponed to the time that pollution control technologies of domestic enterprises are fully developed to satisfy the standards of air pollution prevention, because the life expectancy of Kimpo Metropolitan landfill site is about 25 years. Within this period, institutional improvements and technological advancements can be attained, while the air qual. ity of Seoul Metropolitan city can be ameliorated to the level to afford incineration facilities. 5. For final disposal, incombustibles and ash are landfilled sanitarily at Kimpo Metropolitan landfill site.

  • PDF

The pilot study on reclamation of incineration ashes of municipal waste in the demonstrative factory

  • Chang Hui-Lan;Liaw Chin-Tson;Leu Ching-Huoh
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.573-580
    • /
    • 2003
  • In Taiwan there are 21 Municipal Solid Waste Incinerators (MSWI) built to treat 80% of the MSW nationwide. Approximately 2,000 tons of incineration ashes of municipal waste contain reaction ash and fly ash (3:1 by weight)will be produced daily, and this may cause a serious waste problem. According to EPA regulations, reaction ash and fly ash produced after incineration should be properly treated. Landfill capacity barely meets the general demands. More efficient actions should be planned and taken. The study found 'reclamation' should be the optimal solution to this problem. Only limited research and previous successful experiences are available among other countries. An incinerator in Northern Taiwan is chosen for this study to make environmental bricks from the reaction ash and fly ash. From the previous tests, the results of strength test were measured. From the previous test results, the fly ash products have not reached the desired strength; hence, reaction ash is chosen for further pilot study. In the experiment, incineration ashes, cement and gravel are mixed in the ratio of 1:1:1(by weight), to ground concretization aggregate and pelletization aggregate, the concrete products made from the aggregates were of the strength of 108 $kgf/cm^2$ and 142 $kgf/cm^2$ individually. For the purpose of making nonstructural walls which met the State Building Standards. In the study, 50 tons of concrete products was yielded from aggregate and environmental bricks. Further observation and supervision are recommended to ascertain the resource recycling and reclamation. EPA has planned to build three 'Recycling Plants' in northern, middle and southern Taiwan to develop efficient techniques to produce concrete products, sub-base course, soundproofing wall, gravel, artificial fishing reefs, tiles, drainage, bricks and etc. This experiment of the demonstrative plant solves the problem of the incineration ashes and opens another opportunity to reclaim them.

  • PDF

중형 소각로 다이옥신 배출 저감을 위한 최적 운전인자 (Optimal Operation of Medium Sized Incinerator to Minimize PCDD/Fs Emission)

  • 유동준;구자공;정승익
    • 유기물자원화
    • /
    • 제21권4호
    • /
    • pp.44-49
    • /
    • 2013
  • 한국의 중형 소각시설이 전체 소각로 개수의 약 90% 차지하는 실정에서 중형 소각시설의 다이옥신 저감운전기술을 확립하는 것은 매우 시급하다. 생활폐기물과 성상이 유사한 사업장 일반폐기물을 일 20톤 처리용량의 중형규모 구동화격자 스토커 소각시설에서 운전하면서, 각 공정별로 다이옥신 저감을 위한 최적 운전 인자를 도출하였다. CO튀는 현상의 최소가 다이옥신 배출저감에 운전최선책임이 밝혀졌다.

LANDFILL STABILIZATION WITH LANDFILL MINING AND THERMAL TREATMENT PROCESS

  • Gust, Micheal A.
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1996년도 사용종료 매립지의 안정화 에 관한 국제 세미나
    • /
    • pp.97-101
    • /
    • 1996
  • Municipal and sanitary landfills can pose environmental problems due to leachate, landfill gas md unstable geotechnical properties. Most governmental bodies delay the correction of landfill problems or landfill replacement until a crises stage is reached. The replacement of a landfill is often made difficult due to costly regulatory controls, public opposition to siting and the high cost of closure for the previous landfill unit. Solutions to extending landfill life and capacity Involve waste minimization by recycling, refuse compaction and waste-to-energy incineration. Incineration can reduce the volume of refuse by 50-95%. The largest installed bases of municipal waste Incinerators are located in Japan and the U.S. The volume of waste contained in a landfill can be estimated by load count tabulations, weight-and-volume measurements or a material balance analysis based on the trash profile of user categories. for an existing landfill, core samples may be collected and analyzed for use in a material balance analysis. Newly generated refuse contains approximately 50% of the heating value of coal. However, landfill properties vary significantly due to the waste profile of the contributors and biodegradation due to time and weathering. The volume of the Nanji-do landfill

  • PDF

30 kg/hr 급 열분해 용융 소각로에서의 폐기물 열분해/연소/용융 특성 연구 (Combustion and Pyrolysis Characteristics of Solid Wastes in a 30 kg/hr Capacity Pyrolysis Melting Incinerator)

  • 류태우;김봉근;양원;전금하;신동훈;박상욱;임성진;김대성;이진호;황정호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.172-180
    • /
    • 2006
  • A novel pyrolysis-melting incineration system of reduced scale (30 kg/hr) is and constructed in Korea Institute of Industrial Technology. The incineration process is composed of three parts: pyrolysis, gas combustion and ash melting processes. For each unit process, experimental and numerical approaches including reduced-scale cold/hot flow tests have been conducted to find optimal design and operating conditions. This paper presents major results of these approaches with brief descriptions on the pilot-scale incinerator (200 kg/hr) under construction and future research works.

  • PDF

하수슬러지와 생활폐기물 혼합소각시 하수슬러지 정량공급에 관한 연구(II) - 실증플랜트 중심으로 (A study on Quantitative Supply of Sewage Sludge for Co-Incineration of Municipal Solid Waste and Sewage Sludge(II) - Based on Actual Incineration Plant)

  • 조재범;김우구;장훈
    • 대한환경공학회지
    • /
    • 제35권12호
    • /
    • pp.960-966
    • /
    • 2013
  • 본 연구에서는 하수슬러지 처분대안으로서 하수슬러지를 생활폐기물과 혼합소각시 안정적 소각로 운전을 위한 하수슬러지의 정량공급방안에 대하여 실증플랜트를 중심으로 고찰하고자 하수슬러지의 원활한 공급방안으로 이송배관에 수분을 공급 하는 경우와 공급하지 않는 경우, 공급 모노펌프의 인버터 조절(Hz)에 따라 하수슬러지 정량공급 여부를 측정하고자 한다. 실험결과, 함수율 85%에서 인버터 조절(Hz)에 따른 이론적 슬러지 공급량과 일치하는 것으로 나타나 소각시설의 안정적 운영이 가능할 것으로 판단된다.