• Title/Summary/Keyword: Incheon river

Search Result 108, Processing Time 0.021 seconds

Classification of Riparian Riffles and Their Physical and Hydraulic Characteristics (하천 여울의 분류 및 물리, 수리학적 특성 분석)

  • Kim, Seong Whan;Yang, Jeon Young;Kim, Jin Hong
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.2
    • /
    • pp.137-147
    • /
    • 2015
  • This study performed the systematic classification of the various types of riffles and analyzed their physical and hydraulic characteristics at the Hongcheon River and Seomjin River. The riffles are classified into the long type and the wide type by their ratio of length and width, and also classified into the convergent type and the divergent type by their width change along flow direction. They are also classified into the falling type, the running type, the undular wave and the undular jump by their surface profiles. The falling type and the running type usually occur near the cobbles with multiple diameters, whereas the undular wave and the undular jump occur near the small pebbles. They showed the upward convex type at the middle part, and the slope gets bigger at the downstream part.

Grid Cell Analysis using Species Diversity Index of Birds in the Northern Area of Yeongjong Island, Incheon, Korea (영종도 북부지역의 조류 종다양도를 이용한 격자별 공간 분석)

  • Kang, Jong-Hyun;Cho, Hang-Soo;Lee, Yun-Kyoung;Kim, Dong-Won;Kim, Chang-Hoe;Kim, Myungjin;Bae, Yang-Seop
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.649-664
    • /
    • 2012
  • The grid cell analysis is used to select good sites as habitats at the region. The northern area of Yeongjong Island, Incheon has been disturbing by habitat loss due to human activities such as residential development, deforestation. In order to determine significant places as bird habitats and to select conservation areas at this island, the study area was divided into 70 grid cells($500{\times}500m$ each grid) and then each grid was ranked by spatial analysis using the species diversity index. Fieldwork was carried out in Spring and Autumn of 2010. To examine grid cells which were ranked high in both seasons in common, we used the average ranking value, combined data from two seasons. This area consists of mainly agricultural areas and forests(more than 68%) among eight habitat types: the agricultural land, forest, coast, lake, meadow, stream, city and other things. A total of 110 species was recorded: 4,183 birds of 102 species in Spring and 3,326 birds of 58 species in Autumn. In other words, the number of individuals and species was higher in Spring than in Autumn. Species diversity index presented the highest value at M8 grid cell in Spring(3.380) and at A4 gird cell in Autumn(2.736). In 18 of 22 grid cells where the average ranking value was higher than 3, the forest was distributed and in 4 grid cells, the coast and wetland were widely distributed, in which theses were located apart from human-associated disturbances such as construction works for a leisure complex. Our results present a new estimate method not only to minimize loss of bird habitats but also to conserve important habitats when the large-scale development takes place at particular region.

Uplift Pressure Removal System in Underground Structure by Utilizing Geocomposite System (지오컴포지트를 이용한 양압력 제거공법)

  • Shin, Eun-Chul;Kim, Jong-In;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.61-68
    • /
    • 2006
  • Recently the large scale civil engineering projects are being implemented by reclaiming the sea or utilizing seashore and river embankment areas. The reclaimed land and utilized seashore are mostly soft ground that doesn't have sufficient bearing capacity. This soft ground consists of fine-grained soil such as clayey and silty soils or large void soil like peat or loose sand. It has high ground water table and it may cause the failure and crock of building foundation by uplift pressure and ground water leakage. In this study, the permittivity and the transmissivity were evaluated with the applied normal pressure in the laboratory. The laboratory model tests were conducted by utilizing geocomposite drainage system for draining the water out to release the uplift pressure. The soil used in the laboratory drainage test was dredged soil from the reclaimed land where uplift pressure problems can arise in soil condition. Geocomposite drainage system was installed at the bottom of apparatus and dredged soil was layered with compaction. Subsequently the water pressure was supplied from the top of specimen and the quantities of drainage and the pore water pressure were measured at each step water pressure. The results of laboratory measurements were compared with theoretical values. For the evaluation of propriety of laboratory drainage test, 2-D finite elements analysis that can analyze the distribution and the transferring of pore water pressure was conducted and compared with laboratory test results.

Two unrecorded alien plants in South Korea: Holosteum umbellatum L. and Asperugo procumbens L. (한국 미기록 외래식물: 산형나도별꽃, 갈퀴지치)

  • Lee, Hye-Jeong;Jung, Su-Young;Park, Soo-Hyun;Yun, Seok-Min;Yang, Jong-Cheol
    • Korean Journal of Plant Taxonomy
    • /
    • v.44 no.4
    • /
    • pp.276-280
    • /
    • 2014
  • Two alien plants Holosteum umbellatum L. and Asperugo procumbens L., belonging to Boraginaceae and Caryophyllaceae, respectively, have been first recorded in Hongseong-gun, Chungcheongnam-do and Incheon, South Korea. This initial investigation reports to inform the importance of detection and extermination of these potential weeds in surrounding areas. Furthermore, we report the morphological characteristic features of these two alien plants.

The Netherlands Spatial Development for Port Area in City-Region Focusing on the Case of Kop van Zuid in Rotterdam

  • Lee, Hee Jae;Whang, Heejoon
    • Architectural research
    • /
    • v.22 no.4
    • /
    • pp.135-143
    • /
    • 2020
  • The Netherlands is a human-made country and an extremely well-designed European country as well. The general Dutch spatial planning for the city and environment takes place at a regional level. The local community determines the primary development conditions, and the prospect is included in a legally binding land-use plan. Especially, Rotterdam is a representative port city as the center of world trade and the gateway to western Europe. According to the history of war, the city reconstruction and the movement of the port area have led to a general change in Rotterdam and the regional redevelopment project on the southern port area of Mass river for the expansion of city functions and the balanced development. The research purpose is to understand the spatial development of the Netherlands city-region based on the analysis regarding the Kop van Zuid project, which is a representative implemented case in Rotterdam. The theoretical framework is the five dimensions and twelve indicators of territorial governance from the TANGO research project by the EU. The target case is assessed by planning and social aspect, respectively, and the results are discussed based on the theoretical framework. This research has the possibility to be utilized as advanced research by the European perspective for spatial development in other city-regions with the port area, such as Incheon and Busan in Korea.

Analysis of Tidal Asymmetry and Flood/Ebb Dominance around the Yeomha Channel in the Han River Estuary (한강하구 염하수로 주변에서의 조석·조류 비대칭과 창·낙조 우세 분석)

  • Yoon, Byung-Il;Woo, Seung-Buhm
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.915-928
    • /
    • 2012
  • Han River estuary (HRE) is located at the middle of the western coast of Korea, and tidal currents were measured at 4 stations in this estuary during the winter season, and previously observed tide data was analyzed. The results of amplitude ratio of $M_4/M_2$ showed that increasing upward to estuary in the HRE. Tide harmonic constants of relative phase $2M_2-M_4$ represent flood dominance, with under 180 degree. But this method has a limit of analysis that typically based on the non-linear distortion of the tidal current in tidal lagoon system where freshwater discharge is assumed to be relatively small. The results of statistically tidal current data indicated that ebb current velocity would be great unlike tide data. Ebb and flood duration time is calculated by slack time of tidal current showed that ebb duration time is longer than flood. The results of correlation of analysis show high value (0.9) between tidal current stations from Incheon harbor to north entrance of Yeomha channel. We reconstructed to find the reasons for the features of ebb dominance the results of harmonic analysis. As major component ($M_2$) in combination with shallow water component ($M_4$), the tidal curve was presented flood dominance that has a flood current is stronger. However, these curve were changed to ebb dominance add up the non-harmonic components that had ebb direction flow by calculated tidally averaged current. The characteristic of enhancement on ebb is showed around the Yeomha channel in the HRE, because averaged flow which acts seaward such as long-term tidal current components due to non-linear effect and freshwater which overcome the flood current.

Experimental Study on the Characteristics of Local Scour Hole Downstream of V-shaped Drop Structure Model (V자형 낙차공 모형 직하류 국부세굴공 발생특성에 관한 실험적 연구)

  • Eom, Junghyun;Han, Hyeongjun;Park, Sung Won;Ahn, Jungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.8-14
    • /
    • 2019
  • A drop structure, one of the representative river-crossing structures, is constructed to stabilize a riverbed. On the other hand, the structure interrupts the continuity of the river and causes the destruction of the hydro-ecological environment. Therefore, laboratory experiments of a natural type of drop structure with low differences were performed, and the empirical formula of a local scour hole is proposed. Four experimental flow rates were tested for various types of the drop structure models with 28 test cases. Based on the scour test, it was confirmed that the maximum scour depth occurs rather than the result of applying the previously proposed scour depth formulae. Correlation analysis of the major factors of scour hole at the downstream of the drop structure revealed a strong correlation between the upstream flow characteristics, drop structure height, and total crossing length of the drop model. In addition, the depth and length estimation formula of the maximum scour hole were proposed using the dimensionless variables and validated. In the future, it is also expected that more accurate scour prediction and calculation can be derived by conducting experimental studies and numerical analysis considering the various bed materials and flow conditions.

A Comparative Study on Hydraulic Jump and Specific Energy Losses at Downstream According to the Weir Discharge Types (보 유출형태에 따른 하류부 도수 및 비에너지 손실에 관한 비교 연구)

  • Park, Hyo-Seon;Yoon, Geun-Ho;Koo, Bon-Jin;Choi, Gye-Woon
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.149-157
    • /
    • 2013
  • The weirs built so far are mainly overflow type weirs overflowing to the upstream. Main advantages of overflow type weirs are, effective water resources management and easy design, construction and maintenance due to many accumulated studies. However, due to the special feature of the overflow type weir where water overflows through the upstream of the weir, the silt coming from the upstream is not discharged to the downstream of the weir. This increases the river bed and reduces the reservoir capacity, and as a result, the weir loses its function. A underflow type weir with a water gate has been implemented in order to solve such sediment deposit and weir maintenance problems. However due to the design problem of recently constructed underflow type weirs, the river bed of the downstream of a weir has been scoured. And this leds to a structural problem. In this study, the flow characteristics of overflow type weirs and underflow type weir, hydraulic jump length analysis depending on change of water depth and the amount of specific energy loss generated per unit length depending on a weir type have been compared and analyzed, for the effective design and management of the weirs. The experiment results show that, when identical upstream conditions of underflow type weir and an overflow type weir were maintained, the hydraulic jump length was up to twice longer with Fr(Froude number) 3.5 of the hydraulic jump length at the underflow type weir, and the hydraulic jump length gradually decreased as the downstream water depth increased. The comparative analysis result of the amount of specific energy loss generated per unit length showed that the amount of energy loss per unit length was twice higher for an overlfow type weir than a underflow type weir. Therefore, in case of a underflow type facility, an additional energy reduction facility is determined to be necessary for safety of water construction structures.

Numerical Study on Spring-Neap Variability of Net Volume Transport at Yeomha Channel in the Han River Estuary (한강하구 수로별 순 수송량과 대.소조기 변화에 따른 염하수로의 순 수송량 변동에 관한 수치해석적 연구)

  • Yoon, Byung-Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.257-268
    • /
    • 2012
  • The EFDC model with find grid resolution system connecting the Gyeong-Gi bay and Han River estuary was constructed to study on spring-neap variability of net volume transport at each channel of the Han River estuary. The simulation time of numerical model is 124 days from May to August, 2009 with freshwater discharge at Han, Imjin and Yeseong River. The calibration and verification of model results was confirmed using harmonic components of water level and tidal current. The net volume transport was calculated during 30 days with normal freshwater conditions at Seokmo channel and Yeomha channel around Ganghwado. The ebbing net volume transport of 44% and 56% is drained into Gyeong-Gi bay through Yeomha and Seokmo channel, respectively. The ebbing net volume transport nearby Seodo at Yeomha channel convergence flooding net volume transport at Incheon harbor, and drain (westward direction) through channel of tidal flat between Ganghwado and Yeongjongdo to the Gyeong-Gi bay. The averaged net volume transport during 4 tidal cycles was compared to variation of spring-neap periods of the Yeomha channel. The convergence position is moved up- and down-ward according to spring-neap variability. The movement of the convergence zone is appeared because 1) increasing of discharged rate tidal flat channel between Ganghwado and Yeongjongdo at the spring period, 2) The growth of barotropic forcing with downward direction at the spring tide, and 3) The strength of the baroclinic pressure gradient is greater than spring with mixing processes.

Effect of Freshwater Discharge from a Water Reservoir on the Flow Circulation in the Semi-Closed Harbor (유수지로부터의 담수 방류가 항 내 해수순환에 미치는 영향)

  • Choi, Jae Yoon;Kim, Jong Wook;Lee, Hye Min;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • To investigate the effect of freshwater discharge on the seawater circulation in the semi-closed harbor, a 3-D hydrodynamic model was applied to the International Ferry Terminal (IFT). The model run is conducted for 45 days (from May 15 to June 30, 2020), and the reproducibility of the model for time-spatial variability of current velocity and salinity was verified by comparison with model results and observation data. There are two sources of freshwater towards inside of the IFT: Han River and water reservoir located in the eastern part of IFT. In residual current velocity results, the two-layer circulation (the seaward flow near surface and the landward flow near bottom)derived from the horizontal salinity gradient in only considering the discharge from a Han River is more developed than that considering both the Han River and water reservoir. This suggests that the impact of freshwater from the reservoir is greater in the IFT areas than that from a Han River. Additionally, the two-layer circulation is stronger in the IFT located in southern part than Incheon South Port located in northern part. This process is formed by the interaction between tidal current propagating into the port and freshwater discharge from a water reservoir, and flow with a low salinity (near 0 psu) is delivered into the IFT. This low salinity distribution reinforces the horizontal stratification in front of the IFT, and maintains a two-layer circulation. Therefore, local sources of freshwater input are considered to estimate for mass transport process associated with the seawater circulation within the harbor and It is necessary to perform a numerical model according to the real-time freshwater flow rate discharged.