Browse > Article
http://dx.doi.org/10.9765/KSCOE.2012.24.4.257

Numerical Study on Spring-Neap Variability of Net Volume Transport at Yeomha Channel in the Han River Estuary  

Yoon, Byung-Il (Department of Oceanography, College of Natural Science, Inha University)
Woo, Seung-Buhm (Department of Oceanography, College of Natural Science, Inha University)
Publication Information
Journal of Korean Society of Coastal and Ocean Engineers / v.24, no.4, 2012 , pp. 257-268 More about this Journal
Abstract
The EFDC model with find grid resolution system connecting the Gyeong-Gi bay and Han River estuary was constructed to study on spring-neap variability of net volume transport at each channel of the Han River estuary. The simulation time of numerical model is 124 days from May to August, 2009 with freshwater discharge at Han, Imjin and Yeseong River. The calibration and verification of model results was confirmed using harmonic components of water level and tidal current. The net volume transport was calculated during 30 days with normal freshwater conditions at Seokmo channel and Yeomha channel around Ganghwado. The ebbing net volume transport of 44% and 56% is drained into Gyeong-Gi bay through Yeomha and Seokmo channel, respectively. The ebbing net volume transport nearby Seodo at Yeomha channel convergence flooding net volume transport at Incheon harbor, and drain (westward direction) through channel of tidal flat between Ganghwado and Yeongjongdo to the Gyeong-Gi bay. The averaged net volume transport during 4 tidal cycles was compared to variation of spring-neap periods of the Yeomha channel. The convergence position is moved up- and down-ward according to spring-neap variability. The movement of the convergence zone is appeared because 1) increasing of discharged rate tidal flat channel between Ganghwado and Yeongjongdo at the spring period, 2) The growth of barotropic forcing with downward direction at the spring tide, and 3) The strength of the baroclinic pressure gradient is greater than spring with mixing processes.
Keywords
EFDC model; net volume transport; spring-neap variability; convergence zone; Han River estuary; Yeomha channel;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 강영승, 채영기, 이형래 (2011). 광양만과 진주만 해역에서 담수 유입으로 인한 밀도성층 변화. 한국해안.해양공학회논문집, 23(1), 126-137.   과학기술학회마을
2 강주환, 박선중, 김양선, 소재귀 (2009). 해수유동모형의 조간대 모의 특성, 한국해안.해양공학회 논문집, 21(5), 357-370.   과학기술학회마을
3 권석재, 강태순 (2007). 남해안의 조위 및 조류거동 수치모의. 한국해안.해양공학회 논문집, 19(3), 253-265.   과학기술학회마을
4 김원 (2001). 신곡수중보와 조석운동을 고려한 한강 본류의 흐름특성. 대한토목학회논문집, 21(3B), 305-314.   과학기술학회마을
5 김종규, 곽경일, 정정호 (2008). 섬진강 하구역의 3차원 혼합특성 연구. 한국해양환경공학회지, 11(3), 164-174.   과학기술학회마을
6 김홍선 (1997). 경기만에서의 해수 유동과 염분 분포에 대한 수치모델링. 석사학위청구논문, 인하대학교.
7 서승원 (2011). 서해연안 상세현상을 통한 천해조석 및 조석비대칭 재현. 한국해안.해양공학회 논문집, 23(4), 313-325.   과학기술학회마을
8 서승원, 이화영, 유상철 (2010). 방조제 완공에 따른 호내부 수질변화 모의. 한국해안.해양공학회 논문집, 22(4), 258-271.   과학기술학회마을
9 송용식, 우승범 (2011). 염하수로 인근에서 조석 변형과 장주기 조류성분의 변동 특성. 한국해안.해양공학회 논문집, 23(5), 393-400.   과학기술학회마을
10 윤병일 (2006). 경기만 한강하구 조석/조류 전파 특성 및 비선형 천해분조에 대한 수치모델링. 석사학위청구논문, 인하대학교.
11 윤병일, 우승범 (2011). 조석 전파 특성을 활용한 한강하구 주요 수로의 지형학적 수렴과 바닥 마찰 간의 관계에 대한 연구. 한국해안.해양공학회 논문집, 23(5), 382-392.   과학기술학회마을
12 윤병일, 우승범 (2012). 한강하구 염하수로 주변의 조석변화에 따른 염분분포와 담수와의 상관관계. 한국해안.해양공학회 논문집, (심사중)   과학기술학회마을   DOI
13 임효혁 (1999). 경기만에서의 수치모델링을 이용한 한강수 유입 연구. 석사학위청구논문, 인하대학교.
14 전지혜, 정세웅 (2012). 새만금호 3차원 수리.수질모델(EFDC)의 수치격자 민감도 분석. 한국물환경학회지, 28(1), 26-37.
15 정정호, 김국진, 양근호, 장윤영, 박선환, 김영택 (2007). 경기만 내 담수 유입으로 인한 시.공간적인 염분변화에 대한 연구. 한국환경영향평가학회, 16(6), 421-432.   과학기술학회마을
16 정태성, 최종화 (2011). EFDC 해수유동모형의 계산시간 효율화. 한국해양환경공학회지, 14(2), 121-129.   과학기술학회마을
17 최병호, (1987). 인천만 조석의 주분조. 한국항만협회지 "항만" 37-50.
18 Blumberg, A. F. and Mellor G. L. (1987). A Description of a Three-Dimensional Coastal Ocean Circulation Model. (ed : Heaps., N. S.), Three Dimensional Coastal Models, American Geophysical Union, Washington, D.C.
19 Casulli, V. and Cheng, R. (1992). Semi-implicit finite difference methods for three-dimensional shallow water flow. International J. for Numerical Methods in Fluids, 15, 629-648.   DOI
20 Fortunato, A. B., Oliveira, A. and Baptista, A. M. (1999). On the effect of tidal flats on the hydrodynamics of the Tagus estuary. Acta Oceanologica Sinica, 22(1), 31-44.   DOI   ScienceOn
21 Hamrick, J. M. (1994). Application of the EFDC, environmental fluid dynamics computer code to SFWMD Water Conservation Area 2A. Report JMH-SFWMD-94-01, Williamsburg, VA, 126 p.
22 Ji, Z. G., Morton, M. R. and Hamrick, J. M. (2001). Wetting and drying simulation of estuarine processes. Estuarine, Coastal and Shelf Science, 53, 683-700.   DOI   ScienceOn
23 Jin, K. R., Hamrick, J. M. and Tisdale, T. S. (2000), Application of a three-dimensional hydrodynamic model for Lake Okeechobee, Journal of Hydraulic Engineering, 106, 758-772.
24 Kuo, A. Y., Shen, J. and Hamrick, J. M. (1996). The effect of acceleration on bottom shear stress in tidal estuaries. Journal of Waterways, Ports, Coastal and Ocean Engineering. 122, 75-83.   DOI
25 Kang, K. R. and Iorio D. D. (2008). A study of estuarine flow using the roving ADCP data. Ocean Science Journal, 43(2), 81-90   과학기술학회마을   DOI
26 Kang, S. K. (1995). Seasonal variability of the M2 tide in the seas adjacent Korea, Continental Shelf Research, 15(9), 1087-1113   DOI   ScienceOn
27 Kim, C. S., Lim, H. S., Kim J. A. and Kim, S. J. (2009). Residual flow and its implication to macro-tidal flats in Kyunggi Bay estuary of Korea. Journal of Coastal Research, SI56, 976-980.
28 Lane, A., (2004). Bathymetric Evolution of the Mersey Estuary, UK, 1906-1997: Causes and Effects. Estuarine, Coastal and Shelf Science, 59, 249-263   DOI   ScienceOn
29 Lee, J. C., Kim, C. S. and Jung, K. T. (2001). Comparison of Bottom Friction Formulations for Single-Constituent Tidal Simulations in Kyunggi Bay. Estuarine, Coastal and Shelf Science, 53, 701-715.   DOI   ScienceOn
30 Leendertse, J. J. and Gritton, E. C. (1971). A water quality simulation model of well mixed estuaries and coastal seas: Vol.2, computational procedures. Rand Corp., Report R-708-NYC, New York.
31 Mellor G. L. and Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems, Review of Geophysics and space Physics. 20, 851-875.   DOI
32 Nunes Vaz, R. A., Lenon, G. W. and de Silva Samarasinghe, J. R. (1989). The negative role of turbulence in estuarine mass transport, Estuarine Coastal Shelf Sci., 28, 361-377.   DOI
33 Stacey, M. T., Burau, J. R. and Monismith, S. G. (2001). Creation of residual flows in a partially stratified estuary. J. Geophy. Res., 106, 17013-17037   DOI
34 Park, K., Oh, J. H., Kim, H. S. and Im, H. H. (2002). Case study: Mass Transport Mechanism in Kyunggi Bay around Han River Mouth. Journal of Hydraulic Engineering, 128(3): 257-267.   DOI   ScienceOn
35 Shen, J., Boon, J. D. and Kuo, A. Y. (1999). A modeling study of a tidal intrusion front and its impact on larval dispersion in the James River estuary, Virginia. Estuaries, 22, 681-692.   DOI   ScienceOn
36 Smagorinsky, J., (1963). General circulation experiments with primitive equations I. the basic experiment. Mon. Weather Rev., 91, 99-164.   DOI
37 Warner, J. C., Geyer, W. R. and Lerczak, J. A. (2005). Numerical modelling of an estuary: a comprehensive skill assessment. Journal of Geophysical Research, 110, C05001.   DOI   ScienceOn
38 Woo, S. B. and Yoon, B. I., (2011). The Classification of Estuary and Tidal Propagation Characteristics in the Gyeong-Gi Bay, South Korea. Journal of Coastal Research, SI64, 1624-1628.
39 Yang, Z. and Hamrick, J. M. (2003). Variational inverse parameter estimation in a cohesive sediment transport model: an adjoint approach. Journal of Geophysical Research, 108(C2), 3055, doi:10.1029/2002JC001423   DOI
40 Yang, Z. and Hamrick, J. M. (2004). Optimal control of salinity boundary condition in a tidal model using a variational inverse method. Estuarine, Coastal and Shelf Science, 62, 13-24.
41 Zou, R., Carter, S., Shoemaker, L., Parker, A. and Henry, T. (2006). An integrated hydrodynamic and water quality modeling system to support nutrient TMDL development for Wissahickon Creek. Journal of Environmental Engineering, 132, 555-566.