• Title/Summary/Keyword: Inbred line

Search Result 132, Processing Time 0.049 seconds

Relationship with botanical characteristics and RAPD analysis of maize inbred lines with tillers (분얼형 옥수수의 식물학적 특성과 RAPD 분석에 의한 근연관계)

  • Kim, Chol-Min;Lee, Hee-Bong;Choi, Hyun-Gu;Jung, Jae-Young;Kim, Gi-Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.28 no.1
    • /
    • pp.8-17
    • /
    • 2001
  • This study was carried out to obtain a basic intonation for the development of a new com hybird with tillers. Materials used in this study were 20 lines having three to four tillers per plant including the PI213749 U.S. line with non-tillers. These 20 lines were compared for the botanical characteristics and genetic distances were measured using RAPD analysis. Flowering date of the K15 was very earlier, while the K07 was very late in flowering date. Stem height and ear height were similar except for K04 and the K15. K06, K13 and K19 lines were appeared to be resistant to lodging due to decreased ear height. Number of tillers per plant of lines used were shown three to five on average. K09 showed the highest kernel yield, while the K08 was low. Among characteristics measured tiller per plant and flowering dates, and silking dates showed a positive correlation, while 100 kernels weight, flowering date and ear height were shown a negative with tillers per plant. A total of 17 bands by RAPD analysis using four per primer were appeared and these lines were classified into three groups, especially the third group could be classified into of four sub-groups.

  • PDF

Development of new broccoli varieties from elite lines obtained by microspore cultivation method (소포자 배양 유래 계통을 활용한 브로콜리 신품종 조기 육성)

  • Kwak, Jung-Ho;Park, Miyoung;Lee, Jun-Gu;Park, Suhyung;Kim, Dae-Young;Jeong, Seung-Ryong;Lim, Yong Pyo;Yoon, Moo Kyoung
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.4
    • /
    • pp.497-502
    • /
    • 2012
  • Since the year 2000, the production and consumption of broccoli have rapidly increased in Korea. And, the average production area and amount were about 1,700 ha and 29,000 ton for the past 5 years. Even with the increase of these cultivation and consumption, more than 95% of the broccoli seeds are currently imported from foreign countries such as Japan and Netherlands. Therefore, development of domestic broccoli varieties is needed to relieve Korean farmers' production cost for broccoli. In this situation, National Institute of Horticultural and Herbal Science (NIHHS) of Korea has tried to develop F1 hybrid varieties from elite lines that were obtained by microspore cultivation method from 2008. As the results, about 850 lines of broccoli were obtained and self-pollinated. Then their ploidy levels of the genome were confirmed to select double haploid (D.H.) lines. And the D.H. lines' horticultural traits were evaluated in open field. After the selection of 17 elite D.H. lines, they were cross-pollinated with a male sterile (MS) line to produce F1 hybrid seeds. After 2 to 3 years field trials of these F1 hybrid varieties at the area of Suwon, Gangneung, and Jeju respectively, two hybrid varieties such as 'Wongyo8011' and 'Wongyo8012' are selected for the application of variety protection. With these 4 years of research, we found that the microspore cultivation method is a powerful tool for the conventional breeding program, especially for the development of various inbred lines and even F1 hybrid varieties in short time.

Characterization of a Drought-Tolerance Gene, BrDSR, in Chinese Cabbage (배추의 건조 저항성 유전자, BrDSR의 기능 검정)

  • Yu, Jae-Gyeong;Lee, Gi-Ho;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.102-111
    • /
    • 2016
  • The goal of this study was to characterize the BrDSR (Drought Stress Resistance in B. rapa) gene and to identify the expression network of drought-inducible genes in Chinese cabbage under drought stress. Agrobacterium-mediated transformation was conducted using a B. rapa inbred line ('CT001') and the pSL100 vector containing the BrDSR full length CDS (438 bp open reading frame). Four transgenic plants were selected by PCR and the expression level of BrDSR was approximately 1.9-3.4-fold greater than that in the wild-type control under drought stress. Phenotypic characteristics showed that BrDSR over-expressing plants were resistant to drought stress and showed normal growth habit. To construct a co-expression network of drought-responsive genes, B. rapa 135K cDNA microarray data was analyzed to identify genes associated with BrDSR. BrDSR was directly linked to DARK INDUCIBLE 2 (DIN2, AT3G60140) and AUTOPHAGY 8H (ATG8H, AT3G06420) previously reported to be leaf senescence and autophagy-related genes in plants. Taken together, the results of this study indicated that BrDSR plays a significant role in enhancement of tolerance to drought conditions.

QTL Analysis of Germination Rate and Germination Coefficient of Velocity under Low Temperature in Rice (저온에서 벼의 발아율 및 발아속도 관련 양적형질 유전자좌(QTL) 분석)

  • Kim, Jinhee;Mo, Youngjun;Ha, Su-Kyung;Jeung, Ji-Ung;Jeong, Jong-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.8-17
    • /
    • 2021
  • As rice originates from tropical regions, low temperature stress during the germination stage in temperate regions leads to serious problems inhibiting germination and seedling establishment. Identifying and characterizing quantitative trait loci (QTLs) for low-temperature germination (LTG) resistance help accelerate the development of rice cultivars with LTG tolerance. In this study, we identified QTLs for LTG tolerance (qLTG5, qLTG9) and germination coefficient of velocity under optimal conditions (OGCV) (qOGCV7, qOGCV9) using 129 recombinant inbred lines (RILs) derived from the cross between a low-temperature sensitive line Milyang23 and a low-temperature tolerant variety Gihobyeo. qLTG9 and qOGCV9 were detected at the same location on chromosome 9. At both LTG QTLs (qLTG5 and qLTG9), the alleles for LTG tolerance were contributed by the japonica variety Gihobyeo. At qOGCV7 and qOGCV9, the alleles for low temperature tolerance were derived from Milyang23 and Gihobyeo, respectively. The RILs with desirable alleles at two or more QTLs, i.e., GroupVII: qLTG5+qLTG9 (qOGCV9) and GroupVIII: qLTG5+qOGCV7+qLTG9 (qOGCV9), showed stable tolerance under low-temperature stress. Our results are expected to contribute to the improvement of tolerance to low-temperature and anaerobic stress in japonica rice, which would lead to the wide adoption of direct-seeding practices.

Evaluation of Regional Adaptability in Introduced Super Sweet Corn Hybrids and Heritability of Agronomic Traits (도입 초당옥수수 교잡종의 지역 적응성 및 농업 형질의 유전력 평가)

  • Lee, Shin-Young;Kang, Jong-won;Wang, Seung-hyun;Park, Tai-choon;Chung, Jong-Wook;So, Yoon-Sup
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.2
    • /
    • pp.130-137
    • /
    • 2021
  • This study evaluated newly introduced, commercial super sweet corn hybrids (Zea mays L.) for their potential as breeding materials. Agronomic traits were measured and variance components were obtained using a linear mixed model to estimate the heritability. The trials were carried out in 2018 at two locations (Haenam and Oksan in South Korea). All traits had low heritability, except for mid tasseling and silking days. These traits with low heritability mostly had low genetic variance component estimate. In case of ear height ratio, significant genotype by location appeared to be responsible for low genetic variance, which in turn led to low heritability. Low heritability estimates from the trials with commercial hybrids were perhaps because those hybrids were highly improved for commercial success. Hence, this does not necessarily point to them having poor potential as breeding materials. To overcome low heritability, significant genotype by environment interaction, and achieve high selection efficiency, intermating among hybrids is recommended to create new recombinants before inbred line development.

Synchronization of Flowering for Hybrid Com Seed Production by Clipping Young Plants Clear Polyethylene Mulching and Planting Date (옥수수 교잡종채종에 있어 유식물절단 비닐피복 및 파종기에 의한 자식계통 개화기조절)

  • Kang, Y.K.;Park, K.Y.;Ham, Y.S.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.4
    • /
    • pp.481-487
    • /
    • 1983
  • The need to synchronize flowering in two lines of different maturities is frequently encountered in hybrid com (Zea mays L.) seed production. To establish the methods for synchrony of flowering in parent lines of different maturities be effects of clipping at 4 and 6-leaf stages of growth and two levels, clear polyethylene mulching and five different planting dates on flowering date growth and seed yield of two dent com inbred lines of different maturities were evaluated Clipping just above the shoot-apex delayed pollen sheeding 6 to 9days and silking 5 to 13 days but reduced stand and seed yield 30 to 70% and 67 to 81%. respectively. Clipping 5cm above the shoot apex delayed flowering 1 to 4 days without stand reduction but reduced yield 3 to 29%. Laterclipping was slightly more effective for delaying flowering than earlier clipping but reduced stand more severely when clipped just above the shoot apex. Under clear polyethylene film mulching, flowering of two lines was 13 to 15 days earlier and seed yield of B68 (late line) was significantly increased. As planting was delayed from April 18 to June 13, the number of days from planting to flowering of two lines decreased due to increase in air temperature. However, growing degree days (GDD) from planting to flowering of each lines was similar regardless planting dates indicating that GDD can be satisfactoryly used for choosing the planting dates of parent lines of different maturities. Seed yields of two lines were decreased with delaying planting dates.

  • PDF

QTL Identification for Slow Wilting and High Moisture Contents in Soybean (Glycine max [L.]) and Arduino-Based High-Throughput Phenotyping for Drought Tolerance

  • Hakyung Kwon;Jae Ah Choi;Moon Young Kim;Suk-Ha Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.25-25
    • /
    • 2022
  • Drought becomes frequent and severe because of continuous global warming, leading to a significant loss of crop yield. In soybean (Glycine max [L.]), most of quantitative trait loci (QTLs) analyses for drought tolerance have conducted by investigating yield changes under water-restricted conditions at the reproductive stages. More recently, the necessity of QTL studies to use physiological indices responding to drought at the early growth stages besides the reproductive ones has arisen due to the unpredictable and prevalent occurrence of drought throughout the soybean growing season. In this study, we thus identified QTLs conferring wilting scores and moisture contents of soybean subjected to drought stress in the early vegetative stage using an recombinant inbred line (RIL) population derived from a cross between Taekwang (drought-sensitive) and SS2-2 (drought-tolerant). For the two traits, the same major QTL was located on chromosome 10, accounting for up to 11.5% of phenotypic variance explained with LOD score of 12.5. This QTL overlaps with a reported QTL for the limited transpiration trait in soybean and harbors an ortholog of the Arabidopsis ABA and drought-induced RING-D UF1117 gene. Meanwhile, one of important features of plant drought tolerance is their ability to limit transpiration rates under high vapor pressure deficiency in response to mitigate water loss. However, monitoring their transpiration rates is time-consuming and laborious. Therefore, only a few population-level studies regarding transpiration rates under the drought condition have been reported so far. Via employing an Arduino-based platform, for the reasons addressed, we are measuring and recording total pot weights of soybean plants every hour from the 1st day after water restriction to the days when the half of the RILs exhibited permanent tissue damage in at least one trifoliate. Gradual decrease in moisture of soil in pots as time passes refers increase in the severity of drought stress. By tracking changes in the total pot weights of soybean plants, we will infer transpiration rates of the mapping parents and their RILs according to different levels of VPD and drought stress. The profile of transpiration rates from different levels of severity in the stresses facilitates a better understanding of relationship between transpiration-related features, such as limited maximum transpiration rates, to water saving performances, as well as those to other drought-responsive phenotypes. Our findings will provide primary insights on drought tolerance mechanisms in soybean and useful resources for improvement of soybean varieties tolerant to drought stress.

  • PDF

Recurrent parent genome (RPG) recovery analysis in a marker-assisted backcross breeding based on the genotyping-by-sequencing in tomato (Solanum lycopersicum L.) (토마토 MABC 육종에서 GBS(genotyping-by-sequencing)에 의한 RPG(recurrent parent genome) 회복률 분석)

  • Kim, Jong Hee;Jung, Yu Jin;Seo, Hoon Kyo;Kim, Myong-Kwon;Nou, Ill-Sup;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.165-171
    • /
    • 2019
  • Marker-assisted backcrossing (MABC) is useful for selecting an offspring with a highly recovered genetic background for a recurrent parent at early generation to various crops. Moreover, marker-assisted backcrossing (MABC) along with marker-assisted selection (MAS) contributes immensely to overcome the main limitation of the conventional breeding and it accelerates recurrent parent genome (RPG) recovery. In this study, we were employed to incorporate rin gene(s) from the donor parent T13-1084, into the genetic background of HK13-1151, a popular high-yielding tomato elite inbred line that is a pink color fruit, in order to develop a rin HK13-1084 improved line. The recurrent parent genome recovery was analyzed in early generations of backcrossing using SNP markers obtained from genotyping-by-sequencing analysis. From the $BC_1F_1$ and $BC_2F_1$ plants, 3,086 and 4868 polymorphic SNP markers were obtained via GBS analysis, respectively. These markers were present in all twelve chromosomes. The background analysis revealed that the extent of RPG recovery ranged from 56.7% to 84.5% and from 87.8% to 97.8% in $BC_1F_1$ and $BC_2F_1$ generations, respectively. In this study, No 5-1 with 97.8% RPG recovery rate among $BC_2F_1$ plants was similar to HK13-1151 strain in the fruit shape. Therefore, the selected plants were fixed in $BC_2F_2$ generation through selfing. MAS allowed identification of the plants that are more similar to the recurrent parent for the loci evaluated in the backcross generations. MABC can greatly reduce breeding time as compared to the conventional backcross breeding. For instance, MABC approach greatly shortened breeding time in tomato.

Transformation of Bottle Gourd Rootstock (Lagenaria siceraria Standl.) using GFP gene (GFP유전자를 이용한 대목용 박 형질전환)

  • Lim, Mi-Young;Park, Sang-Mi;Kwon, Jung-Hee;Han, Sang-Lyul;Shin, Yoon-Sup;Han, Jeung-Sul;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.33-37
    • /
    • 2006
  • Bottle gourd (Lagenaria siceraria Standl.) has been used as a rootstock for the watermelon cultivation because of better growth ability at low temperature and avoidance from contamination of the soil disease. Since the genetic source for the elite rootstock is limited in nature, the genetic engineering method is inevitable to develop new lines especially to obtain the functionally important or multi-disease resistant bottle gourd. Recently, our lab has set up a successful system to transform the bottle gourd. in order to monitor the transformation process, GFP gene is used. Cotyledons of the inbred line 9005, 9006 and G5 were used to induce the shoot under the selection media with MS + 30 g/L sucrose + 3.0 mg/L BAP + 100 mg/L kanamycin + 500 mg/L cefotaxime + 0.5 mg/L $AgNO_3$, pH 5.8. The shoot was developed from the cut side of the explants after 3 weeks on the selection media. The shoot was incubated in the rooting media with 1/2 MS + 30 g/L sucrose + 0.1 mg/L IAA + 50 mg/L kanamycin + 500 mg/L cefotaxime, pH 5.8 and moved to pot for acclimation. Although the shoot development rate was depended on the genotype, the G5 was the best line to be transformed. Monitoring GFP expression from the young shoot under microscope could make the selection much easier to distinguish the transformed shoot from the non-transformed shoots.

Growth Characteristics and Variation in Amino Acids Composition of Quality Protein Maize Lines (고라이신(QPM) 주요 계통과 교잡계의 생육특성 및 아미노산 조성 변이)

  • Bae, Hwan-Hee;Son, Beom-Young;Go, Young-Sam;Park, Hye-Young;Yi, Gibum;Ha, Jun Young;Kim, Mi-Jung;Kim, Sun-Lim;Baek, Seong-Bum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.3
    • /
    • pp.222-230
    • /
    • 2020
  • Maize grain quality can be improved by raising lysine content, which is an essential amino acid present in insufficient quantities in normal maize. Maize varieties with such modifications are known as quality protein maize (QPM). To date, no Korean maize cultivars contain high amounts of lysine. To introduce quality protein maize to Korean cultivars, we crossed QPM CIMMYT maize lines (CML) with KS140, an elite inbred line used as a parent of several cultivars such as 'Gangdaok' and 'Pyeonganok'. We analyzed the phenotypic characteristics of F1 plants as well as the protein contents, amino acids, and fatty acids profiles of the self-pollinated seeds of the F1 hybrids, and evaluated the feasibility of CML as a source of QPM. Days to anthesis of the CML ranged from 78 to 90 days after planting (DAP), whereas a range of 81~87 was recorded for F1 hybrids. The average days to anthesis was 85 for KS140, CML, and the F1 hybrids. The protein content of the CML was measured to be between 9.1 and 12.1%, with the highest and lowest values being recorded in CML153 and 191, respectively. The F1 hybrids had protein contents of 9.1~11.1%, and the highest content was observed in KS141/CML188. The fatty acids profiles were very similar across all analyzed maize samples, and linoleic acid (C18:2) composed the greatest proportion. Glutamic acid made up the largest proportion of amino acids in all maize samples. Lysine composition was highest in CML155 (6.92% of all amino acids), with an average composition of 4.83% across the CML. In contrast, KS140 showed a lysine content of 2.51%. In F1 hybrids, the average lysine composition was 3.46%, and KS140/CML164 (4.18%) and KS140/CML163 (4.99%) contained more lysine than either parent. Taken together, these results indicate that CML could become promising QPM sources to improve grain quality in Korean maize cultivars.