• Title/Summary/Keyword: InVEST모델

Search Result 22, Processing Time 0.023 seconds

Numerical Analysis on Body Temperature Change with Heating Life Vest (발열구명동의 착용에 의한 인체의 체온변화에 관한 수치해석)

  • Kim, Myoung-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.3
    • /
    • pp.241-245
    • /
    • 2008
  • The characteristics of temperature profile around human body with heating life vest at sea were investigated in this paper. Especially, the temperature profile of human body was numerically calculated by finite difference method with Mathcad. The main parameters were seasonal mean sea water temperature, heating amount and heating duration time of heating life vest. In this paper, the boundary layer was composed by the difference matters, and the thermal conductivity was calculated with an adjacent cells using thermal resistance method. It was clarified that the body temperature was kept highly and the risk of death from hypothermia was reduced by wearing heating life vest.

  • PDF

Evaluation of Ecosystem Service for Distribution of Korean fir using InVEST Model (InVEST모델을 이용한 생태계서비스의 가치 평가 - 구상나무 분포지를 대상으로 -)

  • Choi, Jiyoung;Lee, Sangdon
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.2
    • /
    • pp.181-193
    • /
    • 2018
  • The present study was conducted to analyze the quality of the habitats of Abies koreana WILS. by using the InVEST model based on the analytic hierarchy process (AHP) technique and to evaluate the economic value by estimating the carbon fixation. Abies koreana WILS., an original biological species of South Korea, may be an essential element in establishing the national biological sovereignty in the future. The subjects of the present study were the national parks in Mt. Halla, Mt. Jiri, and Mt. Sobaek, which are the habitats of Abies koreana WILS. As suggested by previous studies as a limitation of the InVEST model, the utilization of the data from relevant international publications as the input data, due to the lack of the domestic input data, may decrease the accuracy of the modeling. Therefore, the AHP technique was applied for the input data. The modeling was performed with reference to the years of 1980, 1990, and 2000 for the scenario analysis. The result of the modeling showed that the habitat quality was changed most in the national park in Mt. Halla, as the habitat quality score was decreased from 0.96 in 1980 to 0.97 in 1990 and 0.94 in 2000. In the national part of Mt. Sobeak, the habitat quality was changed most in the sub-alpine zone, as the habitat quality score was decreased from 0.98 in 1980 and 0.98 in 1990 to 0.97 in 2000. The habitat quality was best conserved in the national part in Mt. Jiri, as the habitat quality score was 0.98 in 1980, 0.99 in 1990, and 0.99 in 2000. The estimated economic loss by the change of the habitat quality was 19,280,000 USD for Mt. Halla and 8,030,000 USD for Mt. Sobeak. In the present study, the habitat quality of the Abies koreana WILS, the original species of South Korea, was evaluated and the economic value of the ecological services provided by the habitats was estimated quantitatively. The result showed that the ecosystem service model may be used to qualitatively analyze the quality of a habitat located in a specific region and to estimate the economic value quantitatively. The objective evaluation of ecosystem services demonstrated in the present study may be applied to promote sustainable utilization of natural resources and conservation of the ecosystem by predicting the changes that may be caused by external factors including the development of preservation areas.

Application of InVest-Habitat Quality Model for Assessing Watershed Health (유역 건전성평가를 위한 InVest-Habitat quality 모형의 적용)

  • Lee, Jiwan;Park, Jongyoon;Woo, Soyoung;Lee, Younggwan;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.451-451
    • /
    • 2021
  • 인간활동으로 인해 서식처의 변화, 서식처의 파편화를 비롯하여 기후변화, 토지이용의 변화 등으로 생태계 생물 다양성은 빠르게 손실되고있는 상황이다. 특히 생물 다양성은 생태계 복원력에 중요한 인자로서 유역의 건전성 회복을 위해 생물 다양성을 중요한 인자로 고려하려는 경향이 커지고 있다. 유역 건전성은 주로 큰 하천에서의 친수성, 서식처, 유량 및 수질 등에 적용되어왔고 국내에서는 최근 들어 유역 건전성을 확보하기 위해 수량 및 수질관리, 환경문제 등의 해결을 위해 유역관리 차원에서 접근하려는 시도가 시작되었으나 어떠한 수단을 통해 생물다양성과 서식처 관리를 접근할 수 있는지에 대한 연구는 아직 부족한 실정이다. 이에 본 연구에서는 최근 20년 동안 도시화, 댐 건설 등 토지이용변화가 크게 발생한 금강유역(9,865 km2)을 대상으로 InVest 모델 중 서식처 가치평가 모델 (Habitat Quality Model)을 이용하여 유역의 서식처 가치를 평가하고 이를 수생태계 건강성 모니터링 자료와 비교하여 모형의 적용성을 평가하고자 한다.

  • PDF

Habitat Quality Analysis and an Evaluation of Gajisan Provincial Park Ecosystem Service Using InVEST Model (InVEST 모델을 이용한 가지산도립공원의 서식지질 분석과 생태계서비스평가)

  • Kwon, Hye-Yeon;Jang, Jung-Eun;Shin, Hae-Seon;Yu, Byeong-Hyeok;Lee, Sang-Cheol;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.3
    • /
    • pp.318-326
    • /
    • 2022
  • The Convention on Biodiversity (CBD) recommends that 17% of the land be designated as a protected area to counter global environmental problems. Korea also realized a need to designate protected areas according to the international level and explain the significance of designating protected areas. Accordingly, studies on ecosystem services are required. In Korea, the protected areas are designated as national parks, provincial parks, and county parks by hierarchy under the Natural Parks Act. However, as priority was on political and administrative aspects, research on ecosystem service value evaluation and habitat management were concentrated in national parks, and provincial and county parks were relatively neglected. Therefore, more studies on provincial and county parks are necessary. In this study, habitat quality for Gajisan Provincial Park, where there were few studies on habitat management and ecosystem service valuation, was evaluated using the InVEST Habitat Quality model among the InVEST models. The analysis results were compared with 16 mountainous national parks. The results showed that the habitat quality value of Gajisan Provincial Park was 0.83, higher than that of the surrounding areas. The analysis of habitat quality in three districts showed 0,84 for the Tongdosa and Naewonsa districts and 0.83 for the Seoknamsa district. By use district, the nature conservation district, the natural environment district, the cultural heritage district, and the park village district had the highest habitat quality value in that order. Compared with the existing habitat quality analysis results of national parks, Gajisan Provincial Park showed naturalness at the level of Mudeungsan National Park. These results can be used as objective data for establishing policies and management plans to preserve biodiversity and promote ecosystem services in provincial parks.

Habitat Quality Valuation Using InVEST Model in Jeju Island (InVEST 모델을 이용한 서식처 가치 평가 - 제주도를 중심으로 -)

  • Kim, Teayeon;Song, Cholho;Lee, Woo-Kyun;Kim, Moonil;Lim, Chul-Hee;Jeon, Seong Woo;Kim, Joonsoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.5
    • /
    • pp.1-11
    • /
    • 2015
  • Jeju Island is managed intensively in terms of environmental and ecological aspect because of its extraordinary ecosystem types comprising numerous rare, protected flora and fauna. To depict rapid change of habitat status in Jeju Island, the InVEST Habitat Quality model has been operated and compared analytically with the Eco-Natural map. The Habitat Quality map of Jeju Island is turned out to have similar inclination with Eco-Natural map. We compared the average habitat quality value in each Eco-natural map class in Jeju Island and the habitat quality value of first second third grade and non-included area decreased as 0.95 0.76, 0.53 and 0.37 in eco natural map respectively. Compared to biodiversity map based on biological investigation, the result of the InVEST habitat quality model can be simply obtained by land cover map with threat and sensitivity data. Further studies are needed to make explicit coefficients for Jeju Island and Korean peninsula, then the Habitat Quality model could be applied to past and future scenarios to analyze extent of habitat degradation in time series to help decision makers.

Evaluation of InVEST habitat quality model using aquatic ecosystem health data (수생태계 건강성 자료를 이용한 InVEST habitat quality 모델 적용성 평가)

  • Lee, Jiwan;Woo, Soyoung;Kim, Yongwon;Park, Jongyoon;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.657-666
    • /
    • 2021
  • Ecosystem biodiversity is rapidly being lost due to changes in habitat, fragmentation of habitat, climate change, and land use changes by human activities. Recently, attempts have been made to approach the watershed management level to secure the health of the watershed, but studies on how to approach biodiversity and habitat management are still in lack. The purpose of this study is to evaluate the habitat quality of Geum river basin using Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) habitat quality model. The results of habitat quality was verified to eco-natural map and ecological watershed health evaluation results. The habitat quality of watershed was evaluated from 0 to 0.86 and the results showed that habitat quality was higher in upstream than downstream. Compared the habitat quality value in each eco-natural grade, the average habitat quality of 1st, 2nd and 3rd grades were 0.80, 0.76 and 0.71 respectively. The results of the correlation analysis with ecological watershed health data, the coefficient of determination (R2) was 0.58, and the person coefficient was 0.76. The results of this study may be used as foundation data to support habitat protection and implementation of long-term biodiversity-related policies.

Comparison of Carbon Storage Based on Alternative Action by Land Use Planning (토지이용에 따른 대안별 탄소 저장량 비교)

  • Seulki Koo;Youngsoo Lee;Sangdon Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.377-388
    • /
    • 2023
  • Carbon management is emerging as an important factor for global warming control, and land use change is considered one of the causes. To quantify the changes in carbon stocks due to development, this study attempted to calculate carbon storage by borrowing the formula of the InVEST Carbon Storage and Sequestration Model (InVEST Model). Before analyzing carbon stocks, a carbon pool was compiled based on previous studies in Korea. Then, we estimated the change in carbon stocks according to the development of Osong National Industrial Park (ONIP) and the application of alternatives. The analysis shows that 16,789.5 MgC will be emitted under Alternative 1 and 16,305.3 MgC under Alternative 2. These emissions account for 44.4% and 43.1% of the pre-project carbon stock, respectively, and shows that choosing Alternative 2 is advantageous for reducing carbon emissions. The difference is likely due to the difference in grassland area between Alternatives 1 and 2. Even if Alternative 2 is selected, efforts are needed to increase the carbon storage effect by managing the appropriate level of green cover in the grassland, creating multi-layered vegetation, and installing low-energy facilities. In addition, it is suggested to conserve wetlands that can be lost during the stream improvement process or to create artificial wetlands to increase carbon storage. The assessment of carbon storage using carbon pools by land cover can improve the objectivity of comparison and evaluation analysis results for land use plans in Environmental Impact Assessment and Strategic Environmental Impact Assessment. In addition, the carbon pool generated in this study is expected to be used as a basis for improving the accuracy of such analyses.

Assessing Habitat Quality and Risk of Coastal Areasin Busan (부산 연안역의 서식지 질 및 위험도 평가)

  • Jeong, Sehwa;Sung, Kijune
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.2
    • /
    • pp.95-105
    • /
    • 2022
  • Busan, where the coastal ecosystem health is deteriorating due to high development pressure and intensity of use, needs ecosystem management that considers humans and the natural environment together for sustainable use and ecosystem preservation of the coastal areas. In this study, the InVEST model was applied to assess the habitat status of the coastal land and coastal sea to manage the ecosystem based on habitats. As a result of the assessment of the coastal land, the habitat quality of Gadeok-do, Igidae, and Sinseondae, Gijang-gun are high, and Seo-gu, Jung-gu, Dong-gu, and Suyeong-gu are low. In the case of the coastal sea, the habitat risk of the Nakdong river estuary is low, and some areas of Yeongdo-gu, Saha-gu, Gangseo-gu are high. Therefore, for the sustainable use and preservation of coastal ecosystems, it is necessary to prepare ecosystem-based management measures to improve damaged habitats and reduce threats. In addition, the impact on coastal seas should be fully considered when planning coastal land development. The results of the InVEST habitat quality model in coastal land show similar tendencies to the biotope and environmental conservation value assessment map. The results of the habitat risk assessment in the coastal sea are expected to be utilized to identify habitats in the coastal sea and management of threat factors.

Evaluation of Carbon Storage and Economic Value in the Busan Coastal Zone (부산 연안역 탄소저장량 및 경제적 가치 평가)

  • Jeong, Se Hwa;Chung, Jin Wook;Yim, Yu Rim;Sung, Ki June
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.651-658
    • /
    • 2022
  • To cope with climate change, studies are being conducted on natural-based solutions (NBS) that reduce carbon by utilizing ecosystems and ecological resources ultimately to achieve carbon neutrality. In this study, carbon storage and economic value evaluations were conducted of the coastal land and sea of Busan using InVEST's Carbon and Coastal Blue Carbon models, which are ecosystem service-based evaluation models. As a result, it is estimated that the amount of carbon storage per unit area is lower than that of the entire Busan land area and that if the currently underway or planned development works are completed, the carbon storage of the coastal land areas would be decreased more. Coastal sea areas have less carbon storage than coastal land, but there is great potential for NBS that utilize ecological resources in the future. If the reclamation of public water affects important habitats with high carbon storage levels, it will reduce these levels, and such negative effects could last for a long time. For the sustainable management of Busan coastal areas, ecosystem service-based management strategies are needed considering carbon storage.

Change of Carbon Fixation and Economic Assessment according to the Implementation of the Sunset Provision (도시공원 일몰제에 의한 탄소고정량과 경제성 분석에 대한 연구)

  • Choi, Jiyoung;Lee, Sangdon
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.126-133
    • /
    • 2020
  • In accordance with the implementation of the sunset provision to cancel the designations of urban park sites that remained unexecuted for a prolonged period until 2020, the park sites in the city center, which account for 90% of the long-term unexecuted urban facilities subjected to the provision, are currently on the verge of development. The total area of the 204 park sites that will disappear in Seoul as a result of this provision is 95 ㎢; moreover, 116 of these are privately-owned. It is expected that the possible changes in the use of these park sites could result in reckless development and reduction of green space, which would ultimately affect the ecosystem. This study applied the InVEST model to calculate the changes in the fixed carbon amount before and after the implementation of the sunset provision to estimate the economic value of these changes. The study focused on Jongno-gu in Seoul because it has the most unexecuted park sites subjected to the lifting of the designation. The research findings show that the fixed carbon amount provided by the unexecuted park sites in Jongno-gu was 374,448 mg, prior to the implementation of the sunset provision; however, the amount was estimated to decrease by 18% to 305,564 mg after its execution. When calculated in terms of average value of the real carbon price, this translated into a loss of approximately 700 million won. In addition, considering the social costs including both climate change and the impact on the ecosystem, an economic loss of approximately 98 billion won was projected. This study is meaningful because its predictions are based on the estimation of fixed carbon amount according to the implementation of the sunset provision in Jongno-gu and scientifically calculates the value of ecological services provided by the parks in the city. This study can serve not only as a basis during the decision-making process for policies related to ecosystem conservation and development, but also as an evidentiary material for the compensation of privately-owned land that is designated as urban park sites and was unexecuted for a prolonged period.