• Title/Summary/Keyword: InSbTe materials

Search Result 130, Processing Time 0.026 seconds

Optical Transmission Characteristics of Tellurium-based Phase-change Chalcogenide Thin Films (Tellurium계 상변화 칼코겐화물 박막의 광투과 특성)

  • Yoon, Hoi Jin;Bang, Ki Su;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.408-413
    • /
    • 2016
  • The dielectric thin films applied to multi-colored semitransparent thin film solar cells have been extensively studied. In this work, we prepared GeSbTe and GeTe chalcogenide thin films using magnetron sputtering, and investigated their optical and phase-change properties to replace the dielectric films. The changes of surface morphology, sheet resistance, and X-ray diffraction of the Te-based chalcogenide films support the fact that the amorphous stability of GeTe films is superior to that of GeSbTe films. While both amorphous GeSbTe and GeTe films thinner than 30 nm have optical transparency between 5% and 60%, GeTe films transmit more visible light than GeSbTe films. It is confirmed by computer simulation that the color of semitransparent silicon thin film solar cells can be adjusted with the addition of GeSbTe or GeTe films. Since it is possible to adjust the contrast of the solar cells by exploiting the phase-change property, the two kinds of chalcogenide films are anticipated to be used as an optical layer in semitransparent solar cells.

Dependence of Microstructure and Optical Properties of Ag-In-Sb-Te Phase-Change Recording Thin Firms on Annealing Heat-Treatments (열처리 조건에 따른 Ag-In-Sb-Te 상변화 기록 박막의 미세 조직과 반사도의 관계)

  • Seo, H.;Park, J. W.;Choi, W. S.;Kim, M. R.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.9-14
    • /
    • 1996
  • The dependence of microstructural and optical properties of Ag-In-Sb-Te thin films on annealing heat-treatments was studied. It was found from the present work that the increase of reflectance after annealing heat-treatment is related with phase change of Ag-In-Sb-Te thin film from amorphous state to crystalline phases which involve Sb crystalline phase and AgInTe$_2$ stoichiometric phase. On the other hand, the reflectance is decreased after high temperature annealing (above 450$^{\circ}C$), due to the morphology .mange of film surface. For the purpose of practical application(erasable optical disk), we fabricated quadrilayered Ag-In-Sb-Te alloy disk, and annealed it with continuous laser beam. As result of this laser\ulcorner annealing treatment, we found that the increment of reflectance is 9.3% at 780nm wavelength. It might be considered that Ag-In-Sb-Te alloy optical disk is the big promising candidate for the erasable optical memory medium.

  • PDF

Thermoelectric Properties of p-type 25% $Bi_{2}Te_{3}+75%Sb_{2}Te_{3}$ Materials Prepared by Rapid Solidification Process and Hot Pressing (급속응고기술에 의한 p-type 25% $Bi_{2}Te_{3}+75% Sb_{2}Te_{3}$ 열간압축제의 열전특성)

  • 김익수
    • Journal of Powder Materials
    • /
    • v.3 no.4
    • /
    • pp.246-252
    • /
    • 1996
  • $Bi_{2}Te_{3}-Sb_{2}Te_{3}$, $Bi_{2}Te_{3}-Bi_{2}Se_{3}$ solid solutions are of great interest as materials for thermoelectric energy conversion. One of the key technologies to ensure the efficiency of thermoelectric device is to obtain chemically homogeneous solid solutions. In this work, the new process with rapid solidification followed by hot pressing was investigated to produce homogeneous thermoelectric materials. Characteristics of the materials were examined with XRD, SEM, EPMA-line scan and bending test. Property variations of the materials were investigated as a function of variables, such as excess Te quantity and hot pressing temperature. Quenched ribbons are very brittle and consisted of homogeneous $Bi_{2}Te_{3}$, $Sb_{2}Te_{3}$ solid solutions. When the process parameters were optimized, the maximum figure of merit was 3.073$\times$$10^{-3}K^{-4}$. The bending strength of the material, hot pressed at 45$0^{\circ}C$, was 5.87 kgf/${mm}^2$.

  • PDF

Fabrication and Characterization of Thermoelectric Thick Film by Using Bi-Te-Sb Powders

  • Yu, Ji-Hun;Bae, Seung-Chul;Ha, Gook-Hyun;Kim, Ook-Jung;Lee, Gil-Gun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.430-431
    • /
    • 2006
  • Thermoelectric thick film was fabricated by screen printing process with using p-type Bi-Te-Sb powders. The powder was synthesized by melting, milling and sintering process and hydrogen reduced to enhance the thermoelectric property. The thick film of Bi-Te-Sb powder was fabricated by screen printing method and baked at the optimized conditions. The thermal conductivity, the electrical resistivity and Seeback coefficient of thick film were measured and the thermoelectric performance was analyzed in terms of film characteristics and its microstructure. Finally, the feasibility of thermoelectric thick film into micro cooling device on CPU chip was discussed in this study.

  • PDF

Synthesis of Bi-Sb-Te Thermoelectric Nanopowder by the Plasma Arc Discharge Process (플라즈마 아크 방전법에 의한 Bi-Sb-Te 나노 열전분말 제조)

  • Lee, Gil-Geun;Lee, Dong-Youl;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.352-358
    • /
    • 2008
  • The present study focused on the synthesis of a bismuth-antimony-tellurium-based thermoelectric nanopowders using plasma arc discharge process. The chemical composition, phase structure, particle size of the synthesized powders under various synthesis conditions were analyzed using XRF, XRD and SEM. The powders as synthesized were sintered by the plasma activated sintering. The thermoelectric properties of sintered body were analyzed by measuring Seebeck coefficient, specific electric resistivity and thermal conductivity. The chemical composition of the synthesized Bi-Sb-Te-based powders approached that of the raw material with an increasing DC current of the are plasma. The synthesized Bi-Sb-Te-based powder consist of a mixed phase structure of the $Bi_{0.5}Sb_{1.5}Te_{3}$, $Bi_{2}Te_{3}$ and $Sb_{2}Te_{3}$ phases. This powder has homogeneous mixing state of two different particles in an average particle size; about 100nm and about 500nm. The figure of merit of the sintered body of the synthesized 18.75 wt.%Bi-24.68 wt.%Sb-56.57 wt.%Te nanopowder showed higher value than one of the sintered body of the mechanically milled 12.64 wt.%Bi-29.47 wt.%Sb-57.89 wt.%Te powder.

A Transmission Electron Microscopy Study on the Crystallization Behavior of In-Sb-Te Thin Films (In-Sb-Te 박막의 결정화 거동에 관한 투과전자현미경 연구)

  • Kim, Chung-Soo;Kim, Eun-Tae;Lee, Jeong-Yong;Kim, Yong-Tae
    • Applied Microscopy
    • /
    • v.38 no.4
    • /
    • pp.279-284
    • /
    • 2008
  • The phase change materials have been extensively used as an optical rewritable data storage media utilizing their phase change properties. Recently, the phase change materials have been spotlighted for the application of non-volatile memory device, such as the phase change random access memory. In this work, we have investigated the crystallization behavior and microstructure analysis of In-Sb-Te (IST) thin films deposited by RF magnetron sputtering. Transmission electron microscopy measurement was carried out after the annealing at $300^{\circ}C$, $350^{\circ}C$, $400^{\circ}C$ and $450^{\circ}C$ for 5 min. It was observed that InSb phases change into $In_3SbTe_2$ phases and InTe phases as the temperature increases. It was found that the thickness of thin films was decreased and the grain size was increased by the bright field transmission electron microscopy (BF TEM) images and the selected area electron diffraction (SAED) patterns. In a high resolution transmission electron microscopy (HRTEM) study, it shows that $350^{\circ}C$-annealed InSb phases have {111} facet because the surface energy of a {111} close-packed plane is the lowest in FCC crystals. When the film was heated up to $400^{\circ}C$, $In_3SbTe_2$ grains have coherent micro-twins with {111} mirror plane, and they are healed annealing at $450^{\circ}C$. From the HRTEM, InTe phase separation was occurred in this stage. It can be found that $In_3SbTe_2$ forms in the crystallization process as composition of the film near stoichiometric composition, while InTe phase separation may take place as the composition deviates from $In_3SbTe_2$.

Properties $(Bi,Sb)_2(Te,Se)_3$-based Thermoelectrics Prepared by the Extrusion-Sintering Process (압출-소결법으로 제조된 $(Bi,Sb)_2(Te,Se)_3$계 열전재료의 특성)

  • Ji, Cheol-Won;Kim, Il-Ho;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.520-527
    • /
    • 1999
  • As a new approache(extrusion-sintering process) to fabricate the thermoelectric materials, it has been at tempted to extrude and sinter the powders simultaneously. It was possible to produce the highly dense <$(Bi,Sb)_2(Te,Se)_3$-based thermoelectrics with sound surface appearances and microstructures by adjusting the process variables. For the p-type materials, the Seeback coefficient was increased with the amount of Te dopants, and the thermoelectric figure of merit appeared to be $2.5\times10^{-3}/K$ at room temperature when doped with 3 at % Te. The n-type specimen doped with 0.16 mol% $SbI_3$ showed the thermoelectric figure of merit of $1.8\times10^{-3}/K$. In both p-type an 우-type materials, the carrier mobility an the thermoelectric figure of merit parallel to the extrusion direction were higher than those perpendicular to it.

  • PDF

Effect of Sintering Temperature on the Thermoelectric Properties of Bismuth Antimony Telluride Prepared by Spark Plasma Sintering (방전플라즈마 소결법으로 제조된 Bismuth Antimony Telluride의 소결온도에 따른 열전특성)

  • Lee, Kyoung-Seok;Seo, Sung-Ho;Jin, Sang-Hyun;Yoo, Bong-Young;Jeong, Young-Keun
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.280-284
    • /
    • 2012
  • Bismuth antimony telluride (BiSbTe) thermoelectric materials were successfully prepared by a spark plasma sintering process. Crystalline BiSbTe ingots were crushed into small pieces and then attrition milled into fine powders of about 300 nm ~ 2${\mu}m$ size under argon gas. Spark plasma sintering was applied on the BiSbTe powders at 240, 320, and $380^{\circ}C$, respectively, under a pressure of 40 MPa in vacuum. The heating rate was $50^{\circ}C$/min and the holding time at the sintering temperature was 10 min. At all sintering temperatures, high density bulk BiSbTe was successfully obtained. The XRD patterns verify that all samples were well matched with the $Bi_{0.5}Sb_{1.5}Te_{3}$. Seebeck coefficient (S), electric conductivity (${\sigma}$) and thermal conductivity (k) were evaluated in a temperature range of $25{\sim}300^{\circ}C$. The thermoelectric properties of BiSbTe were evaluated by the thermoelectric figure of merit, ZT (ZT = $S^2{\sigma}T$/k). The grain size and electric conductivity of sintered BiSbTe increased as the sintering temperature increased but the thermal conductivity was similar at all sintering temperatures. Grain growth reduced the carrier concentration, because grain growth reduced the grain boundaries, which serve as acceptors. Meanwhile, the carrier mobility was greatly increased and the electric conductivity was also improved. Consequentially, the grains grew with increasing sintering temperature and the figure of merit was improved.

The Phase Transition with Electric Field in Ternary Chalcogenide Thin Films

  • Yang, Sung-Jun;Lee, Jae-Min;Shin, Kyung;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.5
    • /
    • pp.185-188
    • /
    • 2004
  • Phase transitions from the amorphous to crystalline states, and vice versa, of GST(GeSbTe) and AST(AsSbTe) thin films by applying electrical pulses have been studied. These materials can be used as nonvolatile memory devices. The thickness of ternary chalcogenide thin films is approximately 100 nm. Upper and lower electrodes were made of AI. I-V characteristics after impressing the variable pulses to GST and AST films. Tc(crystallization temperature) of AST system is lower than that of the GST system, so that the current pulse width of crystallization process can be decreased.

X-ray Diffraction Analysis of Ag-In-Sb-Te

  • Park, Jeong W.;Hun. Seo;Kim, Myong R.;Park, Woo S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.94-98
    • /
    • 1996
  • The x-ray diffraction experiments were carried out to investigate the phase transformation of the sputter-deposited Ag-In-Sb-Te optical thin films after rapid thermal annealing and while being annealed with high-temperature x-ray attachment. The formation mechanism of the reported mixed phase, with both amorphous phase and fine crystalline AgSbTe2 phase, of Ag-In-Sb-Te system in its ordered state was explained. Moreover the characteristics of the other phases which appear during the annealing processes were also discussed in the present article.

  • PDF