• Title/Summary/Keyword: InSAR technique

Search Result 229, Processing Time 0.023 seconds

A case study of ground subsidence analysis using the InSAR technique (InSAR 기술을 이용한 지반침하분석 사례연구)

  • Moon, Joon-Shik;Oh, Hyoung-seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.171-182
    • /
    • 2022
  • InSAR (Interferometry SAR) technique is a technique that uses complex data to obtain phase difference information from two or more SAR image data, and enables high-resolution image extraction, surface change detection, elevation measurement, and glacial change observation. In many countries, research on the InSAR technique is being conducted in various fields of study such as volcanic activity detection, glacier observation in Antarctica, and ground subsidence analysis. In this study, a case of large ground settlement due to groundwater level drawdown during tunnelling was introduced, and ground settlement analyses using InSAR technique and numerical analysis method were compared. The maximum settlement and influence radius estimated by the InSAR technique and numerical method were found to be quite similar, which confirms the reliability of the InSAR technique. Through this case study, it was found that the InSAR technique reliable to use for estimating ground settlement and can be used as a key technology to identify the long-term ground settlement history in the absence of measurement data.

Ground Settlement Monitoring using SAR Satellite Images (SAR 위성 영상을 이용한 도심지 지반 침하 모니터링 연구)

  • Chungsik, Yoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.55-67
    • /
    • 2022
  • In this paper, fundamentals and recent development of the interferometric synthetic aperture radar, known as InSAR, technique for measuring ground deformation through satellite image analysis are presented together with case histories illustrating its applicability to urban ground deformation monitoring. A study area in Korea was selected and processed based on the muti-temporal time series InSAR analysis, namely SBAS (Small Baseline Subset)-InSAR and PS (Persistent Scatterers)-InSAR using Sentinel-1A SAR images acquired from the year 2014 onward available from European Space Agency Copernicus Program. The ground settlement of the study area for the temporal window of 2014-2022 was evaluated from the viewpoint of the applicability of the InSAR technique for urban infrastructure settlement monitoring. The results indicated that the InSAR technique can reasonably monitor long-term settlement of the study area in millimetric scale, and that the time series InSAR technique can effectively measure ground settlement that occurs over a long period of time as the SAR satellite provides images of the Korean Peninsula at regular time intervals while orbiting the earth. It is expected that the InSAR technique based on higher resolution SAR images with small temporal baseline can be a viable alternative to the traditional ground borne monitoring method for ground deformation monitoring in the 4th industrial era.

Monitoring of Volcanic Activity of Augustine Volcano, Alaska Using TCPInSAR and SBAS Time-series Techniques for Measuring Surface Deformation (시계열 지표변위 관측기법(TCPInSAR와 SBAS)을 이용한 미국 알라스카 어거스틴 화산활동 감시)

  • Cho, Minji;Zhang, Lei;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.21-34
    • /
    • 2013
  • Permanent Scatterer InSAR (PSInSAR) technique extracts permanent scatterers exhibiting high phase stability over the entire observation period and calculates precise time-series deformation at Permanent Scatterer (PS) points by using single master interferograms. This technique is not a good method to apply on nature environment such as forest area where permanent scatterers cannot be identified. Another muti-temporal Interferometric Synthetic Aperture Radar (InSAR), Small BAseline Subset (SBAS) technique using multi master interferograms with short baselines, can be effective to detect deformation in forest area. However, because of the error induced from phase unwrapping, the technique sometimes fails to estimate correct deformation from a stack of interferograms. To overcome those problems, we introduced new multi-temporal InSAR technique, called Temporarily Coherence Point InSAR (TCPInSAR), in this paper. This technique utilizes multi master interferograms with short baseline and without phase unwrapping. To compare with traditional multi-temporal InSAR techniques, we retrieved spatially changing deformation because PSs have been found enough in forest area with TCPInSAR technique and time-series deformation without phase unwrapping error. For this study, we acquired ERS-1 and ERS-2 SAR dataset on Augustine volcano, Alaska and detected deformation in study area for the period 1992-2005 with SBAS and TCPInSAR techniques.

A study on enhanced D-InSAR technique Considering Spatial and Temporal Coherence (공간적·시간적 긴밀도를 고려한 개선된 D-InSAR 기법에 관한 연구)

  • Lee, Won Eung;Yoon, Hong Sik;Youm, Min Kyo;Kim, Han Bual
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • The D-InSAR is a technique for precisely measuring the subsidence of subsidence using difference of two SAR images. In order to calculate the subsidence using D-InSAR, a high coherence between master image and the slave image is essential. Since the existing D-InSAR method calculates the displacement based on the total coherence, the accuracy of the subsidence is lowered when the coherence map contains mountains or bare-land. In order to solve this problem, in this study, a point having a temporal coherence and spatial coherence of 0.7 or more was extracted to form TIN, and the subsidence was calculated based on this TIN. In addition, we compared the existing D-InSAR technique with the new D-InSAR technique considering spatial and temporal coherence. As a result, the new D-InSAR technique showed smaller standard deviation, relative variance, variation coefficient and quadrature deviation than the existing D-InSAR technique. It is also easy to grasp the trend of the subsidence.

Study on the Requirement, Consideration, and Critical Baseline in SAR Design Process for the IFSAR Technique (IFSAR 기법 활용을 위해 SAR 설계시 요구조건, 고려사항 및 최대 베이스라인 연구)

  • 홍인표;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1858-1863
    • /
    • 2001
  • SAR data consist of magnitude and phase, and IFSAR technique using phase data is very useful high technology Producing fee height information. To use IFSAR technique effectively in the operation of SAR, this paper suggests the essential requirement and main consideration during SAR design process. Also the critical baseline, one of the principal elements, is derived, and it proposes applicable method through the simulation and discussion to the E-SAR.

  • PDF

New Unsupervised Classification Technique for Polarimetric SAR Images

  • Oh, Yi-Sok;Lee, Kyung-Yup;Jang, Ge-Ba
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.255-261
    • /
    • 2009
  • A new polarimetric SAR image classification technique based on the degree of polarization (DoP) and the co-polarized phase-difference (CPD) is presented in this paper. Since the DoP and the CPD of a scattered wave provide information on the randomness of the scattering and the type of scattering mechanisms, at first, the statistics of the DoP and CPD are examined with measured polarimetric SAR image data. Then, a DoP-CPD diagram with appropriate boundaries between six different classes is developed based on the SAR image. The classification technique is verified using the JPL AirSAR and ALOS PALSAR polarimetric data. The technique may have capability to classify an SAR image into six major classes; a bare surface, a village, a crown-layer short vegetation canopy, a trunk-layer short vegetation canopy, a crown-layer forest, and a trunk-dominated forest.

Remote Sensing of Soil Moisture Change Using a Differential Interferometry Technique (차분 간섭 기법을 이용한 지표면 수분함유량 변화 탐지)

  • Park, Sin-Myeong;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.459-465
    • /
    • 2013
  • This paper presents a differential interferometry technique for soil moisture change detection by measuring surface-height variation. COSMO-SkyMed SAR images were used to verify the DInSAR(differential interferometric SAR) technique. The soil penetration depth changes according to soil moisture, that causes phase change of the received signal. The height of soil surface and its displacement can be detected by a radar interferometry technique using phase difference of two received signals. To retrieve displacement variation, one of three SAR images is used as a reference image. Reference image and other two images are processed by the differential interferometry technique in the same area. The soil moisture was measured for the test sites to verify the DInSAR technique. The penetration depth is calculated by using the in-situ measured soil moisture data and it is compared with the displacement values acquired by the DInSAR technique.

PGA Implementation Technique for Stripmap SAR Signal Processing (Stripmap SAR 신호처리를 위한 PGA 적용 기법)

  • Yoon, Sang-Ho;Koh, Bo-Yeon;Kong, Young-Kyun;Shin, Hee-Sub
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.151-161
    • /
    • 2011
  • PGA(Phase Gradient Autofocus) is a representative autofocus technique to improve the SAR(Synthetic Aperture Radar) image quality. PGA can estimate high order phase errors and have good robustness in noisy environments. However, PGA is not suitable to apply to the stripmap mode data directly because it is based on the spotlight mode operation. In this paper, the PGA implementation technique for stripmap mode data and the method of ROI(Region of Interest) selection that affects severely on PGA performance have been proposed. The proposed technique was verified by the point target simulation first, and was applied to the real SAR signal data acquired by the flight test. Finally, the significant improvements in focusing quality were shown in the processed SAR images using the proposed method.

Simplified Factorizing-Technique for Airborne FMCW-SAR Image Reconstruction (항공기 기반 FMCW-SAR 영상복원을 위한 간소화된 분할연산기법)

  • Hwang, Ji-Hwan;Kim, Duk-Jin;Kim, Jin-Woo;Ok, Jae-Woo;Shin, Hee-Sub;You, Eung-Noh
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.723-732
    • /
    • 2017
  • Simplified factorizing-technique to improve the efficiency on computational procedure and the complexity of the conventional back-projection algorithm, which is used to reconstruct airborne FMCW-SAR image, is suggested, and the reconstruction process of SAR image by this simplified factorizing-technique are presented in this paper. This technique can be efficiently applied to airborne FMCW-SAR having a relatively narrow beamwidth and long synthetic aperture length, and its basic rationale is to exclude the data that has low level of contribution during computational procedure. Using the raw data of practical airborne FMCW-SAR system, performances of this proposed technique such as SAR image quality and processing time were compared and analyzed.

DEFORMATION ANALYSIS IN URBAN AREAS USING PERSISTENT SCATTERER

  • Kim, Sang-Wan;Baek, Jin;Park, Hyuck-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.138-141
    • /
    • 2007
  • The permanent scatterer SAR interferometry (PSInSAR) technique has been developed more recently and has been applied to monitor slow but consistent ground subsidence. Since PSInSAR has the advantages in terms of baseline and temporal decorrelation, PSInSAR technique using X-band may also provide useful information about a ground deformation in detail. We developed our codes for a persistent scatterer analysis, and then apply to ERS-1/2 C-band data over Las Vegas in order to validate our new developed algorithm. Based on this test, PS technique using X-band observation such as TerraSAR-X or KOMSAT 5 will be developed.

  • PDF