• Title/Summary/Keyword: InP quantum dots

Search Result 64, Processing Time 0.029 seconds

Effects of Curing Temperature on the Optical and Charge Trap Properties of InP Quantum Dot Thin Films

  • Mohapatra, Priyaranjan;Dung, Mai Xuan;Choi, Jin-Kyu;Jeong, So-Hee;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.263-272
    • /
    • 2011
  • Highly luminescent and monodisperse InP quantum dots (QDs) were prepared by a non-organometallic approach in a non-coordinating solvent. Fatty acids with well-defined chain lengths as the ligand, a non coordinating solvent, and a thorough degassing process are all important factors for the formation of high quality InP QDs. By varying the molar concentration of indium to ligand, QDs of different size were prepared and their absorption and emission behaviors studied. By spin-coating a colloidal solution of InP QD onto a silicon wafer, InP QD thin films were obtained. The thickness of the thin films cured at 60 and $200^{\circ}C$ were nearly identical (approximately 860 nm), whereas at $300^{\circ}C$, the thickness of the thin film was found to be 760 nm. Different contrast regions (A, B, C) were observed in the TEM images, which were found to be unreacted precursors, InP QDs, and indium-rich phases, respectively, through EDX analysis. The optical properties of the thin films were measured at three different curing temperatures (60, 200, $300^{\circ}C$), which showed a blue shift with an increase in temperature. It was proposed that this blue shift may be due to a decrease in the core diameter of the InP QD by oxidation, as confirmed by the XPS studies. Oxidation also passivates the QD surface by reducing the amount of P dangling bonds, thereby increasing luminescence intensity. The dielectric properties of the thin films were also investigated by capacitance-voltage (C-V) measurements in a metal-insulator-semiconductor (MIS) device. At 60 and $300^{\circ}C$, negative flat band shifts (${\Delta}V_{fb}$) were observed, which were explained by the presence of P dangling bonds on the InP QD surface. At $300^{\circ}C$, clockwise hysteresis was observed due to trapping and detrapping of positive charges on the thin film, which was explained by proposing the existence of deep energy levels due to the indium-rich phases.

Colloidal Synthesis of Octahedral Shaped PbSe Nanocrystals from Lead Oleate and Se : Temperature Effect

  • Gokarna, Anisha;Jun, Ki-Won;Khanna, P.K.;Baeg, Jin-Ook;Seok, Sang-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1803-1806
    • /
    • 2005
  • Formation of octahedral shaped PbSe quantum dots at higher synthesis temperature is being reported in this paper. The synthesis includes the reaction between lead oleate and trioctylphosphine selenide under inert gas conditions to produce PbSe. TEM, SEM, XRD and EDS were used to characterize the samples. The SEM exhibited the formation of spherical shaped nanocrystals at temperature below 140 ${^{\circ}C}$ and octahedral shaped nanoparticles at higher temperatures. Moreover, the TEM also showed the well resolved (111) lattice fringes proving that the nanocrystals were crystalline in nature. Synthesis of highly pure PbSe nanocrystals was another interesting aspect of this research.

Down-Conversion Effect Applied to GaAs p-i-n Single Junction Solar Cell

  • Park, Jun-Seo;Kim, Ji-Hun;Go, Hyeong-Deok;Lee, Gi-Yong;Kim, Jeong-Hyeok;Han, Il-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.694-694
    • /
    • 2013
  • With the growing need of more effective energy harvesting, solar energy has been sought as one of the prominent candidates among the eco-friendly methods. Although many types of solar cells have been developed, the electronic conversion efficiency is limited by the material's physical properties: solar cells can only harvest solar energy from limited range in solar energy spectrum. To overcome this physical limit, we approached by using the down conversion effect, transforming the high energy photons to low energy photons, to the range the designated solar cell can convert to electronic energy. In our study, we have fabricated GaAs single junction solar cells and applied CdSe quantum dots for down-conversion. We examine the effects of such application on the solar cell efficiancy, fill-factor, JSC, VOC, etc.

  • PDF

Characteristics of Si Nano-Crystal Memory

  • Kwangseok Han;Kim, Ilgweon;Hyungcheol Shin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.1
    • /
    • pp.40-49
    • /
    • 2001
  • We have developed a repeatable process of forming uniform, small-size and high-density self-assembled Si nano-crystals. The Si nano-crystals were fabricated in a conventional LPCVD (low pressure chemical vapor deposition) reactor at $620^{\circ}c$ for 15 sec. The nano-crystals were spherical shaped with about 4.5 nm in diameter and density of $5{\times}l0^{11}/$\textrm{cm}^2$. More uniform dots were fabricated on nitride film than on oxide film. To take advantage of the above-mentioned characteristics of nitride film while keeping the high interface quality between the tunneling dielectrics and the Si substrate, nitride-oxide tunneling dielectrics is proposed in n-channel device. For the first time, the single electron effect at room temperature, which shows a saturation of threshold voltage in a range of gate voltages with a periodicity of ${\Delta}V_{GS}\;{\approx}\;1.7{\;}V$, corresponding to single and multiple electron storage is reported. The feasibility of p-channel nano-crystal memory with thin oxide in direct tunneling regime is demonstrated. The programming mechanisms of p-channel nano-crystal memory were investigated by charge separation technique. For small gate programming voltage, hole tunneling component from inversion layer is dominant. However, valence band electron tunneling component from the valence band in the nano-crystal becomes dominant for large gate voltage. Finally, the comparison of retention between programmed holes and electrons shows that holes have longer retention time.

  • PDF

Influence of Carrier Trap in InAs/GaAs Quantum-Dot Solar Cells (InAs/GaAs 양자점 태양전지에서 전하트랩의 영향)

  • Han, Im Sik;Kim, Jong Su;Park, Dong Woo;Kim, Jin Soo;Noh, Sam Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2013
  • In order to investigate an influence of carrier trap by quantum dots (QDs) on the solar parameters, in this study, the $p^+-QD-n/n^+$ solar cells with InAs/GaAs QD active layers are fabricated, and their characteristics are investigated and compared with those of a GaAs matrix solar cell (MSC). Two different types of QD structures, the Stranski-Krastanow (SK) QD and the quasi-monolayer (QML) QD, have been introduced for the QD solar cells, and the parameters (open-circuit voltage ($V_{OC}$), short-cirucuit current ($I_{SC}$), fill factor (FF), conversion efficiency (CE)) are determined from the current-voltage characteristic curves under a standard solar illumination (AM1.5). In SK-QSC, while FF of 80.0% is similar to that of MSC (80.3%), $V_{OC}$ and $J_{SC}$ are reduced by 0.03 V and $2.6mA/cm^2$, respectively. CE is lowered by 2.6% as results of reduced $V_{OC}$ and $J_{SC}$, which is due to a carrier trap into QDs. Though another alternative structure of QML-QD to be expected to relieve the carrier trap have been firstly tried for QSC in this study, it shows negative results contrary to our expectations.

The Role of Acid in the Synthesis of Red-Emitting Carbon Dots (장파장 형광 탄소 양자점 제조에 있어서 산의 역할에 대한 연구)

  • Yun, Sohee;Lee, Jinhee;Choi, Jin-sil
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.309-314
    • /
    • 2022
  • Carbon dots (CDs) are few nanometer-sized carbon-based nanoparticles and emerging candidate materials in various fields such as biosensors and bioimaging due to their excellent optical properties and high biocompatibility. However, most CDs, emitting blue light, have limited their application in biomedical fields due to the low penetration of short-wavelength lights into the biological system. Therefore, there has been enormous need to develop long-wavelength emitting CDs. In this study, red-emitting CDs were successfully synthesized through the hydrothermal reaction of p-phenylenediamine with hydrochloric acid. In addition, the effect of the amount of hydrochloric acid on the formation of carbon dots, resulting in the variation of the chemical structures of CDs, were investigated, which was confirmed with the intensive structural analyses using infrared and X-ray photoelectron spectroscopy. It was found that the chemical structure of CDs governed their optical properties and quantum yield. Therefore, this study provides an insight into the role of acid in forming red-emitting CDs as the optimal probe for biomedical application.

Multifunctional Display Panel based on Ferroelectric Polymer-Quantum Dots Composite (강유전체 고분자-양자점 기반 다기능 디스플레이 패널)

  • Son, Yeong-In;Yun, Hong-Jun;Kim, Sang-U
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.122-122
    • /
    • 2018
  • 1. 배경 최근 IoT 기술이 발전함에 따라 각종 전자기기에 들어가는 센서들이 점점 늘어나고 있다. 특히 사용자 중심의 기기들은 기술이 발전함에 따라 집적화가 이루어지면서, 하나의 기기에서 온도, 습도, 조도 등의 다양한 정보를 처리하고 있다. 이에 따라 더 많은 기능을 사용하기 위해, 소모 전력 또한 점차 증가하고 있다. 그러나 부피는 한정되어 있어, 기존 배터리만으로는 증가하는 소모 전력을 모두 보완하기 어렵다. 또한 대표적인 사용자 중심 기기인 스마트폰에서는, 가장 많은 전력을 소모하는 부분이 점점 커지고 있다. 이에 대한 대책으로 버려지는 에너지를 수확하여 전기적인 에너지로 바꿔주는 에너지 하베스팅 기술이 각광을 받고 있다. 에너지 하베스팅 기술은 바람, 진동, 인체의 움직임 등의 기계적 에너지, 태양광, 실내등의 빛 에너지를 전기적인 에너지로 바꿔주는 기술을 말한다. 본 연구에서는 강유전체 고분자 내부에 양자점이 임베딩된 박막을 이용하여, 스마트폰에서 발생하는 빛 에너지와 손가락으로 디스플레이를 터치할 때 발생하는 기계적인 에너지를 모두 수확할 수 있는 새로운 소자를 제시하였다. 소자 내부에 있는 양자점은 빛 에너지를 산란 혹은 흡수하여 발광한 후, 고분자 내부의 전반사를 통해 양 옆에 있는 태양전지로 빛을 전달한다. 또한 컴포짓의 매트릭스를 이루고 있는 강유전체 폴리머인 P(VDF-TrFE)는 강유전 특성을 통해 마찰전기 에너지를 효율적으로 전기 에너지로 전환할 수 있다. 강유전체 특성에 의해 P(VDF-TrFE) 내부에 정렬된 Polarization은 퀀텀닷에 양자구속 스타크 효과(Quantum Confined Stark Effect)를 일으켜 더 긴 파장을 방출한다. 이렇게 바뀐 파장은 실리콘 태양전지에서 더 많이 흡수할 수 있는 영역으로 방출되어 태양전지 출력의 증가를 일으킨다. 마지막으로 실리콘 태양전지의 출력 증가를 보여줌으로써 이를 실험적으로 입증했다.

  • PDF

Synthesis and Properties of InP/ZnS core/shell Nanoparticles with One-pot process (One-pot 공정을 이용한 InP/ZnS core/shell 나노결정 합성 및 특성 연구)

  • Joo, So Yeong;Hong, Myung Hwan;Kang, Leeseung;Kim, Tae Hyung;Lee, Chan Gi
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.11-16
    • /
    • 2017
  • In this study, simple chemical synthesis of green emitting Cd-free InP/ZnS QDs is accomplished by reacting In, P, Zn, and S precursors by one-pot process. The particle size and the optical properties were tailored, by controlling various experimental conditions, including [In]/[MA] (MA: myristic acid) mole ratio, reaction temperature and reaction time. The results of ultraviolet-visible spectroscopy (UV-vis), and of photoluminescence (PL), reveal that the exciton emission of InP was improved by surface coating, with a layer of ZnS. We report the correlation between each experimental condition and the luminescent properties of InP/ZnS core/shell QDs. Transmission electron microscopy (TEM), and X-ray powder diffraction (XRD) techniques were used to characterize the as-synthesized QDs. In contrast to core nanoparticles, InP/ZnS core/shell treated with surface coating shows a clear ultraviolet peak. Besides this work, we need to study what clearly determines the shell kinetic growth mechanism of InP/ZnS core shell QDs.

Phase diagrams adn stable structures of stranski-krastanov structure mode for III-V ternary quantum dots

  • Nakajima, Kazuo;Ujihara, Toru;Miyashita, Satoru;Sazaki, Gen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 1999
  • The strain, surface and interfacial energies of III-V ternary systems were calculated for three kinds of structure modes: the Frank-van der Merwe(FM) mode, the Stanski-Krastanov(SK) mode and the Volmer-Weber(VW) mode. The free energy for each mode was estimated as functions of thickness and composition or lattice misfit. Through comparison of the free energy of each mode, it was found that the thickness-composition phase diagrams of III-V ternary systems can be determined only by considering the balance of the free energy and three kinds of structure modes appear in the phase diagrams. The SK mode appears only when the lattice misfit is large and/or the lattice layer is thick. The most stable structure of the SK mode is a cluster with four lattice layers or minimum thickness on a wetting layer of increasing lattice layers. The VW mode appears when the lattice misfit is large and the lattice layer is thin and only in the INPSb/InP and GaPSb/GaP system which have the largest lattice misfit of III-V ternary systems. The stable region of the SK mode in the GaPSb/GaP and InPSb/InP phase diagrams is largest of all because the composition dependence of the strain energy of these systems is stronger than that of the other systems. The critical number of lattice layers below which two-dimensional(2D) layers precede the three-dimensional(3D) nucleation in the SK mode at x=1.0 depends on the lattice misfit.

  • PDF

InP 기판에 형성한 InAs/InAlGaAs 양자점의 광학적 특성

  • Lee, Ha-Min;Jo, Byeong-Gu;Choe, Il-Gyu;Park, Dong-U;Lee, Gwan-Jae;Lee, Cheol-Ro;Kim, Jin-Su;Han, Won-Seok;Im, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.194.2-194.2
    • /
    • 2015
  • 본 논문에서는 InP 기판에 자발형성법 (Self-assembled Mode)으로 성장한 InAs/InAlGaAs 양자점(Quantum Dots)의 외부 열처리 온도에 따른 광학적 특성을 논의한다. 분자선증착기 (Molecular Beam Epitaxy, VH80MBE)로 5주기 적층구조를 갖는 InAs/InAlGaAs 양자점 시료 (기준시료)를 성장 후 온도 의존성 및 여기광세기 의존성 포토루미네슨스 (photoluminescence, PL) 분광법으로 기본특성을 평가하였다. 양자점 시료를 $500{\sim}800^{\circ}C$에서 열처리를 수행하고 광학적 특성을 열처리 전과 비교하여 분석하였다. $550^{\circ}C$에서 열처리한 InAs/InAlGaAs 양자점 시료의 저온 (11K) PL 파장은 1465 nm를 보였으며, 이는 열처리를 하지 않은 기준시료의 1452 nm 보다 13 nm 장파장으로 이동하였다. 열처리 온도가 $700^{\circ}C$ 이상인 경우, 양자점 PL 파장이 다시 단파장으로 이동하는 현상을 보였지만 여전히 열처리하지 않은 기준시료보다 장파장을 나타내었다. $700^{\circ}C$에서 열처리한 양자점 시료의 저온 PL 광세기는 기준시료보다 15.5배 더 크게 나타났으며, 주변 온도가 증가할수록 더디게 감소하는 것을 확인할 수 있었다. 온도의존성 PL로부터 구한 활성화에너지 (Activation Energy)는 $700^{\circ}C$ 열처리 온도의 경우 175.9 meV를 나타내었다. InAs/InAlGaAs 양자점 시료의 열처리 온도에 따른 광특성 변화를 InAs 양자점과 InAlGaAs 장벽층 계면에서 III족 원소인 In, Al 및 Ga의 상호확산과 결함이 완화되는 현상으로 해석할 수 있다.

  • PDF