• 제목/요약/키워드: InGaAs sensors

검색결과 77건 처리시간 0.02초

Pt-AlGaN/GaN HEMT-based hydrogen gas sensors with and without SiNx post-passivation

  • Vuong, Tuan Anh;Kim, Hyungtak
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.1033-1037
    • /
    • 2019
  • GaN-based sensors have been widely investigated thanks to its potential in detecting the presence of hydrogen. In this study, we fabricated hydrogen gas sensors with AlGaN/GaN heterojunction and investigated how the sensing performance to be affected by SiN surface passivation. The gas sensor employed a high electron mobility transistors (HEMTs) with 30 nm platinum catalyst as a gate to detect the hydrogen presence. SiN layer was deposited by inductively-coupled chemical vapor deposition as post-passivation. The sensors with SiN passivation exhibited hydrogen sensing characteristics with various gas flow rates and concentrations of hydrogen in inert background gas at $200^{\circ}C$ similar to the ones without passivation. Aside from quick response time for both sensors, there are differences in sensitivity and recovery time because of the existence of the passivation layer. The results also confirmed the dependence of sensing performance on gas flow rate and gas concentration.

GaN-based Ultraviolet Passive Pixel Sensor for UV Imager

  • Lee, Chang-Ju;Hahm, Sung-Ho;Park, Hongsik
    • 센서학회지
    • /
    • 제28권3호
    • /
    • pp.152-156
    • /
    • 2019
  • An ultraviolet (UV) image sensor is an extremely important optoelectronic device used in scientific and medical applications because it can detect images that cannot be obtained using visible or infrared image sensors. Because photodetectors and transistors are based on different materials, conventional UV imaging devices, which have a hybrid-type structure, require additional complex processes such as a backside etching of a GaN epi-wafer and a wafer-to-wafer bonding for the fabrication of the image sensors. In this study, we developed a monolithic GaN UV passive pixel sensor (PPS) by integrating a GaN-based Schottky-barrier type transistor and a GaN UV photodetector on a wafer. Both individual devices show good electrical and photoresponse characteristics, and the fabricated UV PPS was successfully operated under UV irradiation conditions with a high on/off extinction ratio of as high as $10^3$. This integration technique of a single pixel sensor will be a breakthrough for the development of GaN-based optoelectronic integrated circuits.

Asymmetric Metal-Semiconductor-Metal Al0.24Ga0.76N UV Sensors with Surface Passivation Effect Under Local Joule Heating

  • Byeong-Jun Park;Sung-Ho Hahm
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.425-431
    • /
    • 2023
  • An asymmetric metal-semiconductor-metal Al0.24Ga0.76N ultraviolet (UV) sensor was fabricated, and the effects of local Joule heating were investigated. After dielectric breakdown, the current density under a reverse bias of 2.0 V was 1.1×10-9 A/cm2, significantly lower than 1.2×10-8 A/cm2 before dielectric breakdown; moreover, the Schottky behavior of the Ti/Al/Ni/Au electrode changed to ohmic behavior under forward bias. The UV-to-visible rejection ratio (UVRR) under a reverse bias of 7.0 V before dielectric breakdown was 87; however, this UVRR significantly increased to 578, in addition to providing highly reliable responsivity. Transmission electron microscopy revealed interdiffusion between adjacent layers, with nitrogen vacancies possibly formed owing to local Joule heating at the AlGaN/Ti/Al/Ni/Au interfaces. X-ray photoelectron microscopy results revealed decreases in the peak intensities of the O 1s binding energies associated with the Ga-O bond and OH-, which act as electron-trapping states on the AlGaN surface. The reduction in dark current owing to the proposed local heating method is expected to increase the sensing performance of UV optoelectronic integrated devices, such as active-pixel UV image sensors.

InGaAs PD 어레이와 광섬유 격자를 이용한 준분배형 전력설비 안전진단 시스템 (A Quasi-Distributed Fiber-Optic Sensor System using an InGaAs PD Array and FBG Sensors for the Safety Monitoring of Electric Power Systems)

  • 김현진;박형준;송민호
    • 조명전기설비학회논문지
    • /
    • 제24권2호
    • /
    • pp.86-91
    • /
    • 2010
  • 광섬유 격자를 이용한 센서 네트워크를 이용하여 준분배형 전력설비 안전진단 시스템을 구성하였다. FBG를 이용한 센서는 한 개의 라인에 복수의 센서가 설치가능하며, 전자기 노이즈에 영향을 받지 않는 특성을 가진다. 광섬유 격자에서 반사되는 파장의 신호를 분석하기 위하여 InGaAs PD 어레이와 홀로그램 회절격자를 이용하여 구조가 간단하면서도 고속의 파장복조가 가능하도록 하였다. 제안한 시스템의 정확도를 개선하기 위해 가우시안 라인피팅을 적용하였고, 높은 파장 정밀도(4[pm])와 동작 안정성을 얻을 수 있음을 확인하였다.

Micromachined ZnO Piezoelectric Pressure Sensor and Pyroelectric Infrared Detector in GaAs

  • Park, Jun-Rim;Park, Pyung
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권2호
    • /
    • pp.239-244
    • /
    • 1998
  • Piezoelectric pressure sensors and pyroelectric infrared detectors based on ZnO thin film have been integrated with GaAs metal-semiconductor field effect transistor (MESFET) amplifiers. Surface micromachining techniques have been applied in a GaAs MESFET process to form both microsensors and electronic circuits. The on-chip integration of microsensors such as pressure sensors and infrared detectors with GaAs integrated circuits is attractive because of the higher operating temperature up to 200 oC for GaAs devices compared to 125 oC for silicon devices and radiation hardness for infrared imaging applications. The microsensors incorporate a 1${\mu}$m-thick sputtered ZnO capacitor supported by a 2${\mu}$m-thick aluminum membrane formed on a semi-insulating GaAs substrate. The piezoelectric pressure sensor of an area 80${\times}$80 ${\mu}$m2 designed for use as a miniature microphone exhibits 2.99${\mu}$V/${\mu}$ bar sensitivity at 400Hz. The voltage responsivity and the detectivity of a single infrared detector of an area 80${\times}$80 $\mu\textrm{m}$2 is 700 V/W and 6${\times}$108cm$.$ Hz/W at 10Hz respectively, and the time constant of the sensor with the amplifying circuit is 53 ms. Circuits using 4${\mu}$m-gate GaAs MESFETs are fabricated in planar, direct ion-implanted process. The measured transconductance of a 4${\mu}$m-gate GaAs MESFET is 25.6 mS/mm and 12.4 mS/mm at 27 oC and 200oC, respectively. A differential amplifier whose voltage gain in 33.7 dB using 4${\mu}$m gate GaAs MESFETs is fabricated for high selectivity to the physical variable being sensed.

  • PDF

Growth and characterization of molecular beam epitaxy grown GaN thin films using single source precursor with ammonia

  • Chandrasekar, P.V.;Lim, Hyun-Chul;Chang, Dong-Mi;Ahn, Se-Yong;Kim, Chang-Gyoun;Kim, Do-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.174-174
    • /
    • 2010
  • Gallium Nitride(GaN) attracts great attention due to their wide band gap energy (3.4eV), high thermal stability to the solid state lighting devices like LED, Laser diode, UV photo detector, spintronic devices, solar cells, sensors etc. Recently, researchers are interested in synthesis of polycrystalline and amorphous GaN which has also attracted towards optoelectronic device applications significantly. One of the alternatives to deposit GaN at low temperature is to use Single Source Molecular Percursor (SSP) which provides preformed Ga-N bonding. Moreover, our group succeeds in hybridization of SSP synthesized GaN with Single wall carbon nanotube which could be applicable in field emitting devices, hybrid LEDs and sensors. In this work, the GaN thin films were deposited on c-axis oriented sapphire substrate by MBE (Molecular Beam Epitaxy) using novel single source precursor of dimethyl gallium azido-tert-butylamine($Me_2Ga(N_3)NH_2C(CH_3)_3$) with additional source of ammonia. The surface morphology, structural and optical properties of GaN thin films were analyzed for the deposition in the temperature range of $600^{\circ}C$ to $750^{\circ}C$. Electrical properties of deposited thin films were carried out by four point probe technique and home made Hall effect measurement. The effect of ammonia on the crystallinity, microstructure and optical properties of as-deposited thin films are discussed briefly. The crystalline quality of GaN thin film was improved with substrate temperature as indicated by XRD rocking curve measurement. Photoluminescence measurement shows broad emission around 350nm-650nm which could be related to impurities or defects.

  • PDF

$Al_2O_3$ 게이트 절연막을 이용한 공핍형 p-채널 GaAs MOSFET의 제조 (Fabrication of a depletion mode p-channel GaAs MOSFET using $Al_2O_3$ gate insulator)

  • 전본근;이태헌;이정희;이용현
    • 센서학회지
    • /
    • 제8권5호
    • /
    • pp.421-426
    • /
    • 1999
  • 본 논문에서는 반절연성 GaAs(semi-insulating GaAs) 기판위에 $Al_2O_3$ 절연막이 게이트 절연막으로 이용된 공핍형모드 p-채널 GaAs MOSFET (depletion mode p-channel GaAs MOSFET)를 제조하였다. 반절연성 GaAs 기판위에 $1\;{\mu}m$의 GaAs 버퍼층(buffer layer), $4000\;{\AA}$의 p형 GaAs 에피층(epi-layer), $500\;{\AA}$의 AlAs층, 그리고 $50\;{\AA}$의 캡층(cap layer)을 차례로 성장시키고 습식열산화시켰으며, 이를 통하여 AlAs층은 완전히 $Al_2O_3$층으로 산화되었다. 제조된 MOSFET의 I-V, $g_m$, breakdown특성 측정을 통하여 AlAs/GaAs epilayer/S I GaAs 구조의 습식열산화는 공핍형 모드 p-채널 GaAs MOSFET를 구현하기에 적합함을 알 수 있다.

  • PDF

Surface Passivation Method for GaN UV Photodetectors Using Oxygen Annealing Treatment

  • Lee, Chang-Ju;Park, Hongsik
    • 센서학회지
    • /
    • 제25권4호
    • /
    • pp.252-256
    • /
    • 2016
  • Epitaxially grown GaN layers have a high surface state density, which typically results in a surface leakage current and a photoresponse in undesirable wavelengths in GaN optoelectronic devices. Surface passivation is, therefore, an important process necessary to prevent performance degradation of GaN UV photodetectors. In this study, we propose oxygen-enhanced thermal treatment as a simple surface passivation process without capping layers. The GaN UV photodetector fabricated using a thermal annealing process exhibits improved electrical and photoresponsive characteristics such as a reduced dark current and an enhanced photoresponsive current and UV-to-visible rejection ratio. The results of this study show that the proposed surface passivation method would be useful to enhance the reliability of GaN-based optoelectronic devices.

InGaZnO Thin-Film Transistor-based pH Sensor with Parylene-C Gate Dielectric

  • Gwang-Eun Choi;Min-Joon Kim;Ra-Yeong Park;Yoon Kim;Dong-Wook Park
    • 센서학회지
    • /
    • 제33권5호
    • /
    • pp.338-343
    • /
    • 2024
  • The measurement of pH is of significant importance in chemistry, life sciences, and environmental monitoring. Unlike conventional pH sensors that utilize glass electrodes, thin-film transistor (TFT)-based pH sensors offer distinct advantages, including enhanced response speed and additional circuit functions. In this study, we developed a pH sensor that incorporates biocompatible parylene-C as both the substrate and sensing layer, thereby enhancing flexibility, transparency, and biological compatibility. We conducted tests to measure the voltage-current characteristics of the pH solutions and assessed their performance in terms of drift and hysteresis. Using InGaZnO (IGZO) as the channel material, our pH sensor demonstrated an average sensitivity of approximately 82 mV/pH, albeit with certain drift limitations. The initial pH measurements exhibited good reversibility over time. IGZO- and parylene-C-based TFT pH sensors are well suited for various applications, including wearable health monitoring, owing to their flexibility and biocompatibility.

A highly integrable p-GaN MSM photodetector with GaN n-channel MISFET for UV image sensor system

  • Lee, Heon-Bok;Hahm, Sung-Ho
    • 센서학회지
    • /
    • 제17권5호
    • /
    • pp.346-349
    • /
    • 2008
  • A metal-semiconductor-metal (MSM) ultraviolet (UV) photodetector (PD) is proposed as an effective UV sensing device for integration with a GaN n-channel MISFET on auto-doped p-type GaN grown on a silicon substrate. Due to the high hole barrier of the metal-p-GaN contact, the dark current density of the fabricated MSM PD was less than $3\;nA/cm^2$ at a bias of up to 5 V. Meanwhile, the UV/visible rejection ratio was 400 and the cutoff wavelength of the spectral responsivity was 365 nm. However, the UV/visible ratio was limited by the sub-bandgap response, which was attributed to defectrelated deep traps in the p-GaN layer of the MSM PD. In conclusion, an MSM PD has a high process compatibility with the n-channel GaN Schottky barrier MISFET fabrication process and epitaxy on a silicon substrate.