• Title/Summary/Keyword: InAs quantum dots

Search Result 277, Processing Time 0.04 seconds

Improved charge balance in quantum dot light-emitting diodes using self-assembled monolayer (자기조립단분자막을 이용한 양자점 발광다이오드의 전하 균형도 개선)

  • Sangwook Park;Woon Ho Jung;Yeyun Bae;Jaehoon Lim;Jeongkyun Roh
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.30-37
    • /
    • 2023
  • To improve the efficiency and stability of colloidal quantum dot light-emitting diodes (QD-LEDs), it is essential to achieve charge balance within the QD emissive layer. Zinc oxide (ZnO) is widely used for constructing an electron transport layer in the state-of-the-art QD-LEDs, but spontaneous electron injection from ZnO often results in excessive electrons in QDs that significantly deteriorate the performance of QD-LEDs. In this study, we demonstrated the improved performance of QD-LEDs by modifying the electron injection property of ZnO with self-assembled monolayer (SAM)-treatment. As a result of improved charge balance, the external quantum efficiency and maximum luminance of QD-LEDs with SAM-treatment were improved by 25% and 200%, respectively, compared to the devices without SAM-treatment.

Influence of Raito of TGA(thioglycolic acid) on CdTe QDs Solution Stability for a Period of Time (CdTe QDs 용액 안정성의 장시간 유지지속을 위한 TGA(thioglycolic acid)의 첨가효과)

  • Kim, Jong-Hwan;Kim, Tae-Hee;Gwoo, Dong-Gun;Kee, Kyung-Bum;Choi, Won-Gyu;Han, Kung-Seok;Ryu, Bong-Ki
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.465-469
    • /
    • 2012
  • This paper focuses on the after synthesis of CdTe quantum dots(QDs) in aqueous solution. CdTe nanoparticles were prepared in aqueous solution using mercaptocarboxylic acid or thioglycolic acid(TGA) as stabilizing agents. QDs emit light smaller than the nano size. The contents of the mercaptocarboxylic acid, and a kind of raw material, were revealed for a period of time. We succeeded in synthesizing a very high quality QDs solution; we discussed how to make QDs better and to keep them stabilized. TGA is known as one of the best stabilizing agents. Many papers have mentioned that TGA is a good stabilizing agent. We dramatically confirmed the state of QDs after the experiments. The QDs solution can be influenced by several factors. Different content of TGA can influence the stability of the CdTe solution. Most papers deal with the synthesis of CdTe, so we decided to discuss the after synthesis process for the stability of the CdTe solution.

Plasmonic Nanosheet towards Biosensing Applications

  • Tamada, Kaoru
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.105-106
    • /
    • 2013
  • Surface plasmon resonance (SPR) is classified into the propagating surface plasmon (PSP) excited on flat metal surfaces and the local surface plasmon (LSP) excited by metalnanoparticles. It is known that fluorescence signals are enhanced by these two SPR-fields.On the other hand, fluorescence is quenched by the energy transfer to metal (FRET). Bothphenomena are controlled by the distance between dyes and metals, and the degree offluorescence enhancement is determined by the correlation. In this study, we determined thecondition to achieve the maximum fluorescence enhancement by adjusting the distance of ametal nanoparticle 2D sheet and a quantum dots 2D sheet by the use of $SiO_2$ spacer layers. The 2D sheets consisting of myristate-capped Ag nanoparticles (AgMy nanosheets) wereprepared at the air-water interface and transferred onto hydrophobized gold thin films basedon the Langmuir-Schaefer (LS) method [1]. The $SiO_2$ sputtered films with different thickness (0~100 nm) were deposited on the AgMy nanosheet as an insulator. TOPO-cappedCdSe/CdZnS/ZnS quantum dots (QDs, ${\lambda}Ex=638nm$) [2] were also transferred onto the $SiO_2$ films by the LS method. The layered structure is schematically shown in Fig. 1. The result of fluorescence measurement is shown in Fig. 2. Without the $SiO_2$ layer, the fluorescence intensity of the layered QD film was lower than that of the original QDs layer, i.e., the quenching by FRET was predominant. When the $SiO_2$ thickness was increased, the fluorescence intensity of the layered QD film was higher than that of the original QDs layer, i.e., the SPR enhancement was predominant. The fluorescence intensity was maximal at the $SiO_2$ thickness of 20 nm, particularly when the LSPR absorption wavelength (${\lambda}=480nm$) was utilized for the excitation. This plasmonic nanosheet can be integrated intogreen or bio-devices as the creation point ofenhanced LSPR field.

  • PDF

Study on the Coating Condition of ZnS Passivation Layer for the Enhanced Photovoltaic Properties of Quantum Dot Photoelectrodes (양자점 광전극의 광전특성 향상을 위한 ZnS 패시베이션 층 코팅 조건에 관한 연구)

  • JUNG, SUNG-MOK;KIM, JAE-YUP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.113-120
    • /
    • 2022
  • Quantum dots (QDs) are attractive photosensitizer candidates for application not only in solar cells but also in solar hydrogen generation. For the prepartion of highly efficient QD-sensitized photoelectrodes, it is important to reduce electron recombination at the photoanode/electrolyte interface. Here, we study on the coating condition of ZnS passivation layers on the photoanodes in QD-sensitized solar cells (QDSCs). The ZnS passivation layers are coated by successive ionic layer adsorption and reaction method, and as the cation precursor, zinc acetate and zinc nitrate are empolyed. Due to the higher pH of cation precursor solution, the ZnS loading is improved when the zinc acetate is used, compared to the zinc nitrate. This improved loading of ZnS leads to the reduced electron recombination at the surface of photoanodes and the enhaced conversion efficiency of QDSCs from 6.07% to 7.45%.

Analysis of Subwavelength Metal Hole Array Structure for the Enhancement of Quantum Dot Infrared Photodetectors

  • Ha, Jae-Du;Hwang, Jeong-U;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Kim, Jong-Su;Krishna, Sanjay;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.334-334
    • /
    • 2013
  • In the past decade, the infrared detectors based on intersubband transition in quantum dots (QDs) have attracted much attention due to lower dark currents and increased lifetimes, which are in turn due a three-dimensional confinement and a reduction of scattering, respectively. In parallel, focal plane array development for infrared imaging has proceeded from the first to third generations (linear arrays, 2D arrays for staring systems, and large format with enhanced capabilities, respectively). For a step further towards the next generation of FPAs, it is envisioned that a two-dimensional metal hole array (2D-MHA) structures will improve the FPA structure by enhancing the coupling to photodetectors via local field engineering, and will enable wavelength filtering. In regard to the improved performance at certain wavelengths, it is worth pointing out the structural difference between previous 2D-MHA integrated front-illuminated single pixel devices and back-illuminated devices. Apart from the pixel linear dimension, it is a distinct difference that there is a metal cladding (composed of a number of metals for ohmic contact and the read-out integrated circuit hybridization) in the FPA between the heavily doped gallium arsenide used as the contact layer and the ROIC; on the contrary, the front-illuminated single pixel device consists of two heavily doped contact layers separated by the QD-absorber on a semi-infinite GaAs substrate. This paper is focused on analyzing the impact of a two dimensional metal hole array structure integrated to the back-illuminated quantum dots-in-a-well (DWELL) infrared photodetectors. The metal hole array consisting of subwavelength-circular holes penetrating gold layer (2DAu-CHA) provides the enhanced responsivity of DWELL infrared photodetector at certain wavelengths. The performance of 2D-Au-CHA is investigated by calculating the absorption of active layer in the DWELL structure using a finite integration technique. Simulation results show the enhanced electric fields (thereby increasing the absorption in the active layer) resulting from a surface plasmon, a guided mode, and Fabry-Perot resonances. Simulation method accomplished in this paper provides a generalized approach to optimize the design of any type of couplers integrated to infrared photodetectors.

  • PDF

Development of an Open Sandwich Fluoroimmunoassay Based on FRET (FRET에 기반한 Open Sandwich Fluoroimmunoassay)

  • Wei, Quande;Lee, Moon-Kwon;Seong, Gi-Hun;Choo, Jae-Bum;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.426-432
    • /
    • 2007
  • We have developed a sensitive, one-step, homogeneous open sandwich fluoroimmunoassay (OsFIA) based on fluorescence resonance energy transfer (FRET) and luminescent semiconductor quantum dots (QDs). In this FRET assay, estrogen receptor-$\beta$ (ER-$\beta$) antigen was incubated with QD-labeled anti-ER-$\beta$ monoclonal antibody and AF (Alexa Fluoro)-labeled anti-ER polyclonal antibody for 30 minutes, followed by FRET measurement. The dye separation distance was estimated to be between $80\sim90\;{\AA}$. The present method is rapid, simple and highly sensitive, and did not require the bound/free reagent separation steps and solid-phase carriers. A concentration as low as 0.05 nM (2.65 ng/ml) receptor was detected with linearity ($R^2$ > 0.990). In addition, the assay was performed with commercial antibodies. This assay provides a convenient alternative to conventional, laborious sandwich immunoassays.

Phase Diagrams and Stable Structures of Stranski-Krastanov Structure Mode for III-V Ternary Quantum Dots

  • Nakaima, Kazuno;Ujihara, Toru;Miyashita, Satoru;Sazaki, Gen
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.81-114
    • /
    • 1999
  • The strain, surface and inerfacial energies of III-V ternary systems were calculated for three kinds of structure modes: the Frank-van der Merwe (FM) mode, the Stranski-Krastanov (SK) mode an the Volmer-Wever (VW) mode. The free energy for each mode was estimated as functions of the thickness and composition or lattice misfit. Through comparison of the free energy of each mode, it was found that the thickness-composition phase diagrams of III-V ternary systems can be determined only by considering the balance of the free energy and three kinds of structure modes appear in the phase diagrams. The SK mode appears only when the lattice misfit is large and/or the lattice layer is thick. The most stable structure of the SK mode is a cluster with four lattice layers or minimum thickness on a wetting layer of increasing lattice layers. The VW mode appears when the lattice misfit is large and the lattice layer is thin and only in the InPSb/InP and GaPSb/GaP systems which have the largest lattice misfit of III-V ternary systems. The stable region of the SK mode in the GaPSb/GaP and InPSb/InP phase diagrams is largest of all because the composition dependence of the strain energy of these systems is stronger than that of the other systems. The critical number of lattice layers below which tow-dimensional (2D) layers precede the three-dimensional (3D) nucleation in the SK mode at x=1.0 depnds on the lattice misfit.

  • PDF

Morphological and Photoluminescence Characteristics of Laterally Self-aligned InGaAs/GaAs Quantum-dot Structures (수평 자기정렬 InGaAs/GaAs 양자점의 형태 및 분광 특성 연구)

  • Kim J. O.;Choe J. W.;Lee S. J.;Noh S. K.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • Laterally self-aligned InGaAs/GaAs quantum-dots (QDs) have been fabricated by using a multilayer stacking technique. For the growth optimization, we vary the number of stacks and the growth temperature in the ranges of 1-15 periods and $500-540^{\circ}C$. respectively, Atomic force microscope (AFM) images and photoluminescence (PL) spectra reveal that the lateral alignment of QDs is enhanced in extended length by an increased stack period, but severely degrades into film-like wires above a critical growth temperature. The morphological and the photoluminescence characteristics of laterally self-aligned InGaAs QDs have been analyzed through mutual comparisons among four samples with different parameters. An anisotropic arrangement develops with increasing number of stacks, and high-temperature capping allows isolated QDs to be spontaneously organized into a one-dimensionally aligned chain-like shape over a few ${\mu}m$, Moreover, the migration time allowed by growth interruption plays an additional important role in the chain arrangement of QDs. The QD chains capped at high temperature exhibit blue shifts in the emission energy, which may be attributed to a slight outdiffusion of In from the InGaAs QDs.

Electrically Driven Quantum Dot/wire/well Hybrid Light-emitting Diodes via GaN Nano-sized Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Kim, Ryeo-Hwa;Go, Seok-Min;Gwon, Bong-Jun;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.47-47
    • /
    • 2011
  • There have been numerous efforts to enhance the efficiency of light-emitting diodes (LEDs) by using low dimensional structures such as quantum dots (QDs), wire (QWRs), and wells (QWs). We demonstrate QD/QWR/QW hybrid structured LEDs by using nano-scaled pyramid structures of GaN with ~260 nm height. Photoluminescence (PL) showed three multi-peak spectra centered at around 535 nm, 600 nm, 665 nm for QWs, QWRs, and QDs, respectively. The QD emission survived at room temperature due to carrier localization, whereas the QW emission diminished from 10 K to 300 K. We confirmed that hybrid LEDs had zero-, one-, and two-dimensional behavior from a temperature-dependent time-resolved PL study. The radiative lifetime of the QDs was nearly constant over the temperature, while that of the QWs increased with increasing temperature, due to low dimensional behavior. Cathodoluminescence revealed spatial distributions of InGaN QDs, QWRs, and QWs on the vertices, edges, and sidewalls, respectively. We investigated the blue-shifted electroluminescence with increasing current due to the band-filling effect. The hybrid LEDs provided broad-band spectra with high internal quantum efficiency, and color-tunability for visible light-emitting sources.

  • PDF

Stability Assessment of Lead Sulfide Colloidal Quantum Dot Based Schottky Solar Cell

  • Song, Jung-Hoon;Kim, Jun-Kwan;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.413-413
    • /
    • 2012
  • Lead sulfide (PbS) Colloidal quantum dots (CQDs) are promising material for the photovoltaic device due to its various outstanding properties such as tunable band-gap, solution processability, and infrared absorption. More importantly, PbS CQDs have large exciton Bohr radius of 20 nm due to the uniquely large dielectric constants that result in the strong quantum confinement. To exploit desirable properties in photovoltaic device, it is essential to fabricate a device exhibiting stable performance. Unfortunately, the performance of PbS NQDs based Schottky solar cell is considerably degraded according to the exposure in the air. The air-exposed degradation originates on the oxidation of interface between PbS NQDS layer and metal electrode. Therefore, it is necessary to enhance the stability of Schottky junction device by inserting a passivation layer. We investigate the effect of insertion of passivation layer on the performance of Schottky junction solar cells using PbS NQDs with band-gap of 1.3 eV. Schottky solar cell is the simple photovoltaic device with junction between semiconducting layer and metal electrode which a significant built-in-potential is established due to the workfunction difference between two materials. Although the device without passivation layer significantly degraded in several hours, considerable enhancement of stability can be obtained by inserting the very thin LiF layer (<1 nm) as a passivation layer. In this study, LiF layer is inserted between PbS NQDs layer and metal as an interface passivation layer. From the results, we can conclude that employment of very thin LiF layer is effective to enhance the stability of Schottky junction solar cells. We believe that this passivation layer is applicable not only to the PbS NQDs based solar cell, but also the various NQDs materials in order to enhance the stability of the device.

  • PDF