• Title/Summary/Keyword: In-wheel driving system

Search Result 257, Processing Time 0.036 seconds

Virtual Reality Game Modeling for a Haptic Jacket

  • Bae, Hee-Jung;Jang, Byung-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.882-885
    • /
    • 2003
  • In this paper, we describe a haptic jacket and wheel as a haptic interface to enhance VR game realism. Building upon the VR game system using this devices, our haptic interface technique allows the user to intuitive interact on game contents, and then to sense the game event properties such as walking, attacking, driving and fire in a natural way. In addition, we extended the initial haptic model to support haptic decoration and dynamic interactions due to the added game event in a real time display. An application example presented here is a VR Dino-Attack game. This game supports interactions among dynamic and our intuitive haptic interface. Modeling physic interactions involves precise collision detection, real-time force computation, and high control-loop bandwidth.

  • PDF

A Study on the Haptic Control Technology for Unmanned Military Vehicle Driving Control (무인차량 원격주행제어를 위한 힘반향 햅틱제어 기술에 관한 연구)

  • Kang, Tae-Wan;Park, Ki-Hong;Kim, Joon-Won;Kang, Seok-Won;Kim, Jae-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.910-917
    • /
    • 2018
  • This paper describes the developments to improve the feeling and safety of the remote control system of unmanned vehicles. Generally, in the case of the remote control systems, a joystick-type device or a simple steering-wheel are used. There are many cases, in which there are operations without considering the feedback to users and driving feel. Recently, as the application area of the unmanned vehicles has been extended, the problems caused by not considering the feedback are emphasized. Therefore, the need for a force feedback-haptic control arises to solve these problems. In this study, the force feedback-haptic control algorithm considering the vehicle parameters is proposed. The vehicle parameters include first the state variables of dynamics, such as the body side-slip angle (${\beta}$) and yawrate (${\gamma}$), and second, the parameters representing the driving situations. Force feedback-haptic control technology consists of the algorithms for general and specific situations, and considers the situation transition process. To verify the algorithms, a simulator was constructed using the vehicle dynamics simulation tool with CAN communication environment. Using the simulator, the feasibility of the algorithms was verified in various scenarios.

Design of BLDC Motor Controller for Electric Power Wheelchair

  • Chu, Jun-Uk;Moon, In-Hyuk;Choi, Gi-Won;Ryu, Jei-Cheong;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1509-1512
    • /
    • 2003
  • The electric power wheelchair needs to control motor torque and speed for responding to variable actions given by handling a joystick. In this paper a DSP-based BLDC motor controller using a single dc-link current sensor is presented for electric power wheelchair. It is composed by a DSP processor and three-phase inverter module. To control torque, high speed current control is achieved by the PI controller and pulse width modulation (PWM) signals with 25 kHz carrier frequency, which is performed by 200 ${\mu}sec$ cycle. The speed controller computes the new direct current reference from the speed error and the PI control equation. The displacement value by handling the joystick is converted to reference speeds of right and left wheel motors using nonholonomic wheelchair kinematics. Experimental results show that the presented control system is enough to implement a speed servo in wheelchair driving.

  • PDF

A Study on Multi-Axiles using ADAMS (ADAMS를 이용한 다축 시뮬레이터에 관한 연구)

  • 정찬범;유승환;이경백;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.288-291
    • /
    • 2001
  • Vehicle evaluation is performed on the proving ground, and durability test and dynamic test cost lots of money and time. Doing replace real vehicle experiment with similar experiment environment, it will take us much more useful advantages. Suspension simulator is required the robust and high-reliability and used widely. But it's natural of high-leveled control technique to manage to be fitted fluid system's property and complex that is for the lack of self-damping, nonlinearity, compressibility. In designing and evaluating simulator, it is important to understand the capability of kinematic and static performances. In this paper, an kinematic modeling and analysis has been presented using ADAMS to design that can reproduce longitudinal, lateral, and vertical force.

  • PDF

Improvement of Re-adhesion Control Performance on Railway Electric Vehicle using Estimation of Maximum Adhesive Effort (최대점착력 추정을 이용한 철도차량의 재점착 제어 성능 개선)

  • Kim, U-Seok;Kim, Yong-Seok;Gang, Jun-Gu;Seol, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.32-39
    • /
    • 2000
  • In this paper, an improved re-adhesion control scheme is proposed for 1C4M railway traction system. It is well known that the coefficient of adhesion between wheel and rail has a maximum value at a certain slip velocity. In the proposed scheme, adhesive effort is estimated by a full-order observer and the driving torque of motor is controlled to get maximum adhesive effort. The-adhesion control simulator is designed to verify the proposed re-adhesion control algorithm. The simulation results and experimental results are presented.

  • PDF

Improvement of Re-adhesion Control Performance Using Estimation of Maximum Adhesive Force (최대점착력 추정을 이용한 철도차량의 재정착제어 성능 개선)

  • Kim, Woo-Seok;Kim, Yong-Seok;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.163-167
    • /
    • 1998
  • In this paper an improved re-adhesion control scheme is proposed for IC4M(1-Controller 4-Motors) traction system. It is well known that the coefficient of adhesion between wheel and rail has a maximum value at a certain slip velocity. In the proposed scheme, maximum adhesive force is estimated by an observer and the driving torque of motor is controlled to set maximum adhesive force. The simulation results are presented.

  • PDF

An automobile brake judder analysis using CAE (CAE를 이용한 브레이크 저더 해석)

  • Kim H.J.;Kim S.;Kang H.Y.;Yang S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.507-510
    • /
    • 2005
  • Brake judder, which occurs when brakes are suddenly applied to a vehicle driving at high speed, affects the driver's safety to a great extent. It also has a low frequency that drivers can easily feel. Among theses presented, none offered studies using modeling of actual brakes in computer simulation in order to recreate the brake judder phenomenon, and most of them directly applied the frequency generated by the judder. To resolve this issue, this study hopes to develop a computer model that can recreate the phenomenon of brake judder. In this paper, in order to examine the vibration problem occurring when brake is applied on the test car, the multibody dynamic analysis program ADAMS was used to develop a computer model that can recreate the actual braking mechanism while breaking away from the existing understanding of brakes. Thus the existence of the brake judder phenomenon due to DTV(Dist Thickness Variation) and wheel rotating speed was examined through the developed model.

  • PDF

Design of Vehicle Control Algorithm and Engine-generator Control for Drivability of Range-extended Electric Vehicle (주행거리 연장형 전기자동차의 차량제어 알고리즘 설계 및 운전성 확보를 위한 엔진 발전시스템 제어)

  • Park, Youngkug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.649-659
    • /
    • 2016
  • This paper describes control algorithm and control structure of vehicle control unit for range-extended electric vehicle equipped with engine-generator system, and specially presents methods which determine optimal operating points and decreases a vibration or a shock for operating the engine-generating system. The vehicle control algorithm is consisted of several parts which are sequence control, calculation of wheel demand torque, determination of operating points, and management of operating points and so vehicle controller has be made possible to efficiently manage calibration parameters. The control algorithm is evaluated by driving test modes, launching performance and operating engine-generator system and so on. In conclusion, this paper present methods for extending a mileage, improving a launching performance and reducing vibration or shock when the engine-generating system is starting or is stopping.

Preliminary study of Angle sensor module for Vehicle Steering System Based on Multi-track Encoder (자동차 조향장치용 TAS module을 위한 Multi-track Encoder기반 신호처리보드의 구현)

  • Woo, Seong Tak;Han, Chun Soo;Baek, Jun Byung;Lee, Sang-hoon;Jung, Min Woo;Choo, Sung Joong;Park, Jae Roul;Yoo, Jong-Ho;Jung, Sanghun;Kim, Ju Young
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.432-437
    • /
    • 2017
  • As 4.0 industry has been developed, research on a self-driving car technology and related parts of an automobile has been highly investigated recently. Particularly, a TAS(Torque Angle Sensor) module on steering wheel system has been considered as a key technology because of its precise angle, torque detection and high speed signal processing. The environmental assessment is generally required on the TAS module to examine high resolution of angle/torque detection. In the case of existing TAS module, angle detection errors has been occurred by back-lash on main and sub gear in addition to complicated structure caused by gears. In this paper, a structure of the TAS module, which minimizes the numbers of components and angle detection errors on the module compared with the existing TAS module, for vehicle steering system based on a Multi-track Encoder has been proposed. Also, angle detection signal processing board, and key technology of the TAS module were fabricated and evaluated. As a result of the experiments, we confirmed an excellent performance of the fabricated signal processing board for angle detection and an applicability of the fabricated angle detection board on the TAS module of vehicles by the environmental assessment an automobile standard.

Kinematic/dynamic modeling and analysis of a 3 degree-of-freedom redundantly actuated mobile robot (세바퀴 여유구동 모바일 로봇의 기구학/동력학 모델링 및 해석)

  • Park, Seung;Lee, Byung-Joo;Kim, Hee-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.528-531
    • /
    • 1997
  • This paper deals with the kinematic and dynamic modeling of a 3 degree-of-freedom redundantly actuated mobile robot for the purpose of analysis and control. Each wheel is driven by two motors for steering and driving. Therefore, the system becomes force-redundant since the number of input variable is greater than the number of output variable. The kinematic and dynamic models in terms of three independent joint variables are derived. Also, a load distribution method to determine the input loads is introduced. Finally we demonstrate the feasibility of the proposed algorithms through simulation.

  • PDF