• Title/Summary/Keyword: In-tube

Search Result 10,170, Processing Time 0.038 seconds

Experimental results of Stilting type Pulse Tube refrigerator with inertance tube

  • Hong, Yong-Ju;Park, Seong-Je;Kim, Hyo-Bong;Koh, Deuk-Yong;Park, Young-Don
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.118-122
    • /
    • 2003
  • Pulse tube refrigerator, which has no moving parts at its cold section, is attractive fer obtaining higher reliability, simpler construction and lower vibration than Stilting refrigerator or Gifford-McMahon refrigerator. Commonly used means to achieve optimum performance of Stilting type pulse tube refrigerator is an inertance tube. The use of inertance tube is a simple way to generate the phase shift needed to make pulse tube refrigerator operate as efficiently as Stilting refrigerator. In this study, the performance of the inertance pulse tube refrigerator (IPTR) was investigated experimentally. An in-line type IPTR consists of a linear compressor with two reciprocating pistons driven by linear motors, which makes pressure waves, a regenerator a pulse tube with the inertance tube, and a reservoir, The dynamic pressures (the compressor, pulse tube, reservior) and the temperature at the cold heat exchanger are measured to explore the dependence of the inertance tube on the performance of the IPTR. The experimental results show the dependency of cool-down characteristics, no-load temperature and amplitude of the pressures on the length and diameter of the inertance tube.

A study on deformation characteristics of tube hydro-piercing process (하이드로 피어싱에서의 변형 특성 연구)

  • 최성기;안익태;문영훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.237-240
    • /
    • 2003
  • Deformation surrounding the hole in the tube during the hydro-piercing process has been investigated in this study. The tube is expanded and internally pressurized between upper and lower dies, and a piercing punch is driven forcefully through a cross passage in the die and through the wall of the tube. The pressurized fluid within the tube provides support to the wall of the tube during a piercing step to form a hole in the tube having less deformation surrounding the hole in the tube. The deformation area may be fully retracted to a substantially flat form or partially retracted to a countersunk form. In this study, a mathematical model that can predict deformation surrounding the hole has been proposed and experimentally verified by actual hydro-piercing test.

  • PDF

Axial crush and energy absorption characteristics of Aluminum/GERP hybrid square tube (알루미늄/GFRP 혼성 사각튜브의 정적 압축 붕괴 및 에너지 흡수 특성)

  • 김구현;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.168-171
    • /
    • 1999
  • For the axial crushing tests of various shape of tubes, it was reported that composite tubes need trigger mechanism to avoid brittle failure. In this study, static axial crush tests were performed with the new aluminum/GFRP hybrid tubes. Glass/Epoxy prepregs were wrapped around aluminum tube and co-cured. The failure of hybrid tube was stable and progressive without trigger mechanism, and specific energy absorption was increased to maximum 34% in comparison with aluminum tube. Effective energy absorption is possible for inner aluminum tube because wrapped composite tube constrain the deflection of aluminum tube and reduce the folding length. The failure of hybrid composite tube was stable without trigger mechanism because inner aluminum tube could play the role of crack initiator and controller. Aluminum/Glass-Epoxy hybrid tube is suitable for the vehicle front structure due to effective energy absorption capability, easy production, and simple application for RTM process.

  • PDF

Analysis of the Stress Characteristics of Double Layered Tube at Elevated Temperature (고온에서 이중튜브의 열응력특성해석)

  • Kim, E.H.;Jang, J.H.;Park, S.P.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.405-410
    • /
    • 2010
  • Double layered tube that has been used for transportation and oil piping system is occasionally exposed to elevated temperature. The change in stress state at elevated temperature is important for the safe design of double layered tube. In this study, the variation of stress state for hydroformed double layered tube of which inner tube is stainless steel and outer tube is mild steel has been analytically analyzed. To characterize the thermal stress at elevated temperature, analytical model to provide thermal stresses between outer tube and inner tube was developed by using theories of elasticity and Lame equation. The feasibility of analytical model is verified by finite element analysis using ANSYS $CLASSIC^{TM}$, commercially available code. The variation of thermal stress at various thickness combination of inner and outer tube has also been investigated by proposed analytical model.

Riser Installation by a J-Tube Pulling Method

  • Park, H.S.;J. H. Jung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.110-116
    • /
    • 2000
  • The analysis was carried out for a riser installation by a J-tube pulling method. The J-tube system components, mechanics of pull-in operation, and the theoretical background for the J-tube pull-in was investigated. A computer program was developed to calculate the pull-in force for a riser installation by a J-tube pulling method.

  • PDF

Finite Element Simulation of Axisymmetric Tube Hydroforming Processes (축대칭 튜브 하이드로포밍 공정의 유한요소 시뮬레이션)

  • Kim Y. S.;Keum Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.58-61
    • /
    • 2001
  • An implicit finite element formulation for axisymmetric tube hydroforming is investigated. In order to describe normal anisotropy of the tube, Hill's non-quadratic yield function is employed. The frictional contact between die and tube and frictionless contact between tube and fluid are considered using the mesh-normal vector computed from finite element mesh of the tube. In order to verify the validity of the developed finite element formulation, the axisymmetric tube bulge test is simulated and simulation results are compared with experimental measurements. In the axisymmetric tube hydroforming process, an optimal hydraulic curve is pursued by performing the simulation with various internal pressures and axial forces.

  • PDF

On the Deformation Analysis of the Brake Tube-End for Automobiles (자동차용 브레이크 튜브 관단부의 성형해석)

  • Han, K.T.;Park, J.S.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.31-35
    • /
    • 2002
  • Brake tube is considered one of the most important parts in automobile. The shape of brake tube end has a great influence on the function of brake, and the quality and productivity of brake tube have relation to die design. The forming process of brake tube end is performed by hydraulic press forming machine. In this paper, the forming processes of tube end for automobile is analyzed and designed to make the optimal form of brake tube end. Also, finite element analysis has been carried out using $DEFORM^{TM}% 3D to predict the optimal shape of brake tube end and the results obtained showed the optimal length between punch and chuck is $1.0{\sim}1.2mm$. The shape of tube end is in good agreement with the finite element simulations and the experimental results.

  • PDF

Additional Stresses in Flange Frame of Tube Structures under Lateral Loading (수평하중을 받는 튜브 구조물의 플랜지에 작용하는 부가 응력)

  • 이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.317-322
    • /
    • 2001
  • A mathematical modelling technique is proposed for estimating the additional bending stresses of tube(s)-in-tube structures due to tube-tube interaction, which has a significant effects on the shear-lag phenomenon. The proposed method simulates the framed-tube structures with multiple internal tubes as equivalent multiple tubes, each composed of four equivalent orthotropic plate panels. Hence, the tube(s)-in-tube structure can be analysed by using an analogy approach where each tube is individually modelled by a continuous beam that can account for the flexural and shear deformations as well as the shear-lag effects. The numerical analysis is applicable for the structural analysis of framed-tube structures with single and multiple internal tubes, as well as those without internal tubes. The shear-lag phenomenon of such structures is studied with additiona] bending stresses and shear-lag reversal points.

  • PDF

Effects of tube-support parameters on damping of heat exchanger tubes in liquids (튜브지지대 인자가 열교환기 튜브의 감쇠에 미치는 영향)

  • 김범식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1003-1015
    • /
    • 1988
  • Damping information is required to analyse heat exchangers for flow-induced vibration. The most important energy dissipation mechanisms in heat exchanger tubes are related to the dynamic interaction between tube and support. In liquids, squeeze-film damping is dominat. Simple experiments were carried out of a two-span tube with one intermediate support to investigate the effects of tube-support parameters, such as: tube-support thickness, diametral clearance, tube eccentricity, tube span length, location of tube-support, and nature of dynamic interaction between tube and tube-support. The results show that squeeze-film damping is much larger for lateral-type motion than for rocking-type motion at the support. Eccentricity was found to be very important. Diametral clearance, support thickness and frequency are also very relevant. The effects of these parameters on squeeze-film damping are formulated and proposed in a semi-empirical expression.

Development and Characteristics of the x-ray transmission anode tube for the thickness measurement of film (필름 두께 측정용 투과 양극형 x-ray tube의 개발 및 특성)

  • Kim, Sung-Soo;Kim, Do-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.240-246
    • /
    • 2008
  • The x-ray transmission anode Ag-target tube was developed to apply for the thickness measurement of film in the thickness range of several tens$\sim$several hundreds ${\mu}m$ and its characteristics were evaluated. The energy distribution and dose of x-ray from Ag-target tube was investigated at the tube voltage near 10 kV, and discussed in comparition with that from W-target tube. The energy distribution and dose of x-rays passing through film were measured with various thickness of Ny and PP film. From these results, it was confirmed that our x-ray tube can be applied for the thickness measurement of film.