• 제목/요약/키워드: In-structure response spectrum

검색결과 308건 처리시간 0.029초

이중골조에 대한 비선형 약산법들의 응답특성 (The Response Characteristics of Approximate Nonlinear Methods with RC Dual System)

  • 남영우;강병두;전대한;김재웅
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.71-78
    • /
    • 2005
  • In performance-based design methods, it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear tim history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. The nonlinear time analysis is the most accurate method in computing the nonlinear response of structures, but it is time-consuming and necessitate more efforts. Some codes proposed the capacity spectrum method based on the nonlinear static analysis to determine earthquake-induced demand given the structure pushover curve. This procedure is conceptually simple but iterative and time consuming with some errors. The nonlinear direct spectrum method is proposed and studied to evaluate nonlinear response of structures, without iterative computations, given by the structural linear vibration period and yield strength from the pushover analysis. The purpose of this paper is to compare the accuracy and the reliability of approximate nonlinear methods with respect to RC dual system and various earthquakes.

  • PDF

면진된 전단 거동 구조물의 층응답스펙트럼에 대한 편심효과 (In-Structure Response Spectra of Seismically Isolated Shear Buildings Considering Eccentricity Effect)

  • 이승재;김정한
    • 한국지진공학회논문집
    • /
    • 제28권1호
    • /
    • pp.1-10
    • /
    • 2024
  • For important structures such as nuclear power plants, In-Structure Response Spectrum (ISRS) analysis is essential because it evaluates the safety of equipment and components installed in the structure. Because most structures are asymmetric, the response can be affected by eccentricity. In the case of seismically isolated structures, this effect can be greater due to the difference between the center of mass of the structure and the center of rigidity of the isolator layer. Therefore, eccentricity effects must be considered when designing or evaluating the ISRS of seismically isolated structures. This study investigated the change of the ISRS of an isolated structure by assuming accidental eccentricity. The variables that affect the ISRS of the isolated structure were analyzed to see what additional impact they had due to eccentricity. The ISRS of the seismically isolated structure with eccentricity was amplified more than when there was non-eccentricity, and it was boosted more significantly in specific period ranges depending on the isolator's initial stiffness and seismic intensity. Finally, whether the displacement requirement of isolators can be applied to the variation of the ISRS due to eccentricity in the design code was also examined.

포항지진에 대한 원자력발전소 구조물 및 기기의 지진응답분석 (Seismic Response Analysis of Nuclear Power Plant Structures and Equipment due to the Pohang Earthquake)

  • 임승현;최인길
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.113-119
    • /
    • 2018
  • The probabilistic seismic safety assessment is one of the methodology to evaluate the seismic safety of the nuclear power plants. The site characteristics of the nuclear power plant should be reflected when evaluating the seismic safety of the nuclear power plant. The Korea seismic characteristics are strong in high frequency region and may be different from NRC Regulatory Guide 1.60, which is the design spectrum of nuclear power plants. In this study, seismic response of a nuclear power plant structure by Pohang earthquake (2017.11.15. (KST)) is investigated. The Pohang earthquake measured at the Cheongsong seismic observation station (CHS) is scaled to the peak ground acceleration (PGA) of 0.2 g and the seismic acceleration time history curve corresponding to the design spectrum is created. A nuclear power plant of the containment building and the auxiliary buildings are modeled using OPENSEES to analyze the seismic response of the Pohang earthquake. The seismic behavior of the nuclear power plant due to the Pohang earthquake is investigated. And the seismic performances of the equipment of a nuclear power plant are evaluated by the HCLPF. As a result, the seismic safety evaluation of nuclear power plants should be evaluated based on site-specific characteristics of nuclear power plants.

Retrofit Yield Spectra-a practical device in seismic rehabilitation

  • Thermou, G.E.;Elnashai, A.S.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • 제3권2호
    • /
    • pp.141-168
    • /
    • 2012
  • The Retrofit Yield Spectrum (RYS) is a new spectrum-based device that relates seismic demand of a retrofitted structure with the fundamental design parameters of the retrofit. This is obtained from superposition of Yield Point Spectra with design charts that summarize in pertinent spectrum-compatible coordinates the attributes of a number of alternative retrofit scenarios. Therefore, once the requirements for upgrading a given structure have been determined, the RYS enable direct insight of the sensitivity of the seismic response of the upgraded structure to the preliminary design decisions made while establishing the retrofit plan. By virtue of their spectrum-based origin, RYS are derived with reference to a single mode of structural vibration; a primary objective is to control the contribution of this mode in the retrofit design so as to produce a desirable distribution of damage at the ultimate limit state by removing soft storey formations and engaging the maximum number of structural members in deformation, in response to the input motion. Calculations are performed with reference to the yield-point, where secant stiffness is proportional to the flexural strength of reinforced concrete members. Derivation and use of the Retrofit Yield Spectra (RYS) refers to the seismic demand expressed either in terms of spectral acceleration, spectral displacement or interstory drift, at yield of the first storey. A reinforced concrete building that has been tested in full scale to a sequence of simulated earthquake excitations is used in the paper as a demonstration case study to examine the effectiveness of the proposed methodology.

비구조요소의 내진 설계를 위한 기존 층응답스펙트럼의 평가 (A Study on Evaluation of Floor Response Spectrum for Seismic Design of Non-Structural Components)

  • 최경석;이원호;양원직;김형준
    • 한국지진공학회논문집
    • /
    • 제17권6호
    • /
    • pp.279-291
    • /
    • 2013
  • The seismic damage of non-structural components, such as communication facilities, causes direct economic losses as well as indirect losses which result from social chaos occurring with downtime of communication and financial management network systems. The current Korean seismic code, KBC2009, prescribes the design criteria and requirements of non-structural components based on their elastic response. However, it is difficult for KBC to reflect the dynamic characteristics of structures where non-structural components exist. In this study, both linear and nonlinear time history analyses of structures with various analysis parameters were carried out and floor acceleration spectra obtained from analyses were compared with both ground acceleration spectra used for input records of the analyses and the design floor acceleration spectrum proposed by National Radio Research Agency. Also, this study investigates to find out the influence of structural dynamic characteristics on the floor acceleration spectra. The analysis results show that the acceleration amplification is observed due to the resonance phenomenon and such amplification increases with the increase of building heights and with the decrease of structure's energy dissipation capacities.

A study on determination of target displacement of RC frames using PSV spectrum and energy-balance concept

  • Ucar, Taner;Merter, Onur;Duzgun, Mustafa
    • Structural Engineering and Mechanics
    • /
    • 제41권6호
    • /
    • pp.759-773
    • /
    • 2012
  • The objective of this paper is to present an energy-based method for calculating target displacement of RC structures. The method, which uses the Newmark-Hall pseudo-velocity spectrum, is called the "Pseudo-velocity Spectrum (PSVS) Method". The method is based on the energy balance concept that uses the equality of energy demand and energy capacity of the structure. First, nonlinear static analyses are performed for five, eight and ten-story RC frame structures and pushover curves are obtained. Then the pushover curves are converted to energy capacity diagrams. Seven strong ground motions that were recorded at different soil sites in Turkey are used to obtain the pseudo-acceleration and the pseudo-velocity response spectra. Later, the response spectra are idealised with the Newmark-Hall approximation. Afterwards, energy demands for the RC structures are calculated using the idealised pseudo-velocity spectrum. The displacements, obtained from the energy capacity diagrams that fit to the energy demand values of the RC structures, are accepted as the energy-based performance point of the structures. Consequently, the target displacement values determined from the PSVS Method are checked using the displacement-based successive approach in the Turkish Seismic Design Code. The results show that the target displacements of RC frame structures obtained from the PSVS Method are very close to the values calculated by the approach given in the Turkish Seismic Design Code.

Capacity-spectrum push-over analysis of rock-lining interaction model for seismic evaluation of tunnels

  • Sina Majidian;Serkan Tapkin;Emre Tercan
    • Earthquakes and Structures
    • /
    • 제26권5호
    • /
    • pp.327-336
    • /
    • 2024
  • Evaluation of tunnel performance in seismic-prone areas demands efficient means of estimating performance at different hazard levels. The present study introduces an innovative push-over analysis approach which employs the standard earthquake spectrum to simulate the performance of a tunnel. The numerical simulation has taken into account the lining and surrounding rock to calculate the rock-tunnel interaction subjected to a static push-over displacement regime. Elastic perfectly plastic models for the lining and hardening strain rock medium were used to portray the development of plastic hinges, nonlinear deformation, and performance of the tunnel structure. Separately using a computational algorithm, the non-linear response spectrum was approximated from the average shear strain of the rock model. A NATM tunnel in Turkey was chosen for parametric study. A seismic performance curve and two performance thresholds are introduced that are based on the proposed nonlinear seismic static loading approach and the formation of plastic hinges. The tunnel model was also subjected to a harmonic excitation with a smooth response spectrum and different amplitudes in the fully-dynamic phase to assess the accuracy of the approach. The parametric study investigated the effects of the lining stiffness and capacity and soil stiffness on the seismic performance of the tunnel.

부유식 수직축 풍력발전 시스템의 운동특성 및 계류특성에 대한 연구 (Study on Motion and Mooring Characteristics of Floating Vertical Axis Wind Turbine System)

  • 장민석;조효제;황재혁;김재희;김헌우
    • 한국해양공학회지
    • /
    • 제31권3호
    • /
    • pp.202-207
    • /
    • 2017
  • This paper presents the results of an experimental study on the motions and mooring characteristics of a floating vertical axis wind turbine system. Based on a comparison of regular wave experiment results, the motions of structures with different types of mooring are almost the same. Based on the tension response results of a regular wave experiment with a catenary mooring system, the mooring lines in front of the structure have a larger tension effect than the back of the structure by the drifted offset of the structure. The dynamic response spectrum of the structure in the irregular wave experiments showed no significant differences in response to differences in the mooring system. As a result of the comparison of the tension response spectra, the mooring lines have a larger value with a drifted offset for the structure, as shown in the previous regular wave experiment. The results of the dynamic response of the structure under irregular wave and wind conditions showed that the heave motion response is influenced by the coupled effect with the mooring lines of the surge and pitch motion due to the drifted offset and steady heeling. In addition, the mooring lines in front of the structure have a very large tension force compared to the mooring lines in back of the structure as a result of the drifted offset of the structure.

고유진동주기를 이용한 응답수정계수 (Response Modification Coefficient Using Natural Period)

  • 김희중
    • 전산구조공학
    • /
    • 제9권4호
    • /
    • pp.229-237
    • /
    • 1996
  • 구조물의 내진설계는 일반적으로 설계시방서의 스펙트럼을 이용하여 이루어지고 있다. 각 시방서에서 제시된 스펙트럼은 여러지역에서 발생한 지진파들을 최대 지반가속도로 정규화하여 평탄한 응답을 구하였으며, 구조물의 특성에 따라 증감하여 사용하고 있다. 구조물은 지진하중에 의하여 소성변형을 보이고 있으며, 이러한 구조물의 소성변형 능력을 고려하여 설계시방서에서는 응답수정계수를 사용하고 있다. 그러나, 이러한 응답수정계수는 모든 구조물의 고유진동주기에 대하여 일정한 값으로 사용되고 있다. 본 연구에서는 각각의 지진파에 대하여 20개의 인공지진파을 작성하여 평탄한 응답스펙트럼을 구하였다. 구하여진 평균 응답 스펙트럼을 사용하여 구조물의 초기항복강도와 감쇠율의 효과를 측정하였으며, 회기분석을 통하여 내진설계시 각 구조물에 요구되는 변위연성도를 얻기 위한 강도계수를 추정하였다. 또한 현재 사용되고 있는 설계시방서의 응답수정계수를 구조물 고유진동주기의 함수로 나타내었다.

  • PDF

진동수영역해석법을 이용한 캐비닛내부응답스펙트럼 생성 기법 (In-Cabinet Response Spectrum Generation Using Frequency Domain Analysis Method)

  • 조성국;소기환
    • 한국지진공학회논문집
    • /
    • 제24권2호
    • /
    • pp.103-110
    • /
    • 2020
  • Seismic qualification of instruments and devices mounted on electrical cabinets in a nuclear power plant is performed in this study by means of the in-cabinet response spectrum (ICRS). A simple method and two rigorous methods are proposed in the EPRI NP-7146-SL guidelines for generating the ICRS. The simple method of EPRI can give unrealistic spectra that are excessively conservative in many cases. In the past, the time domain analysis (TDA) methods have been mostly used to analyze a structure. However, the TDA requires the generation of an artificial earthquake input motion compatible to the target response spectrum. The process of generating an artificial earthquake may involve a great deal of uncertainty. In addition, many time history analyses should be performed to increase the accuracy of the results. This study developed a numerical analysis program for generating the ICRS by frequency domain analysis (FDA) method. The developed program was validated by the numerical study. The ICRS calculated by FDA thoroughly matched with those obtained from TDA. This study then confirms that the method it proposes can simply and efficiently generate the ICRS compared to the time domain method.