• Title/Summary/Keyword: In-situ rock properties

Search Result 116, Processing Time 0.023 seconds

Borehole Heater Test at KAERI Underground Research Tunnel (지하처분연구시설(KURT)에서의 시추공 히터 시험)

  • Kwon, S.;Lee, C.;Yoon, C.H.;Jeon, S.W.;Cho, W.J.
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.225-234
    • /
    • 2011
  • In this study, an in situ heater test for investigating the thermo-mechanical behavior related to heat flow was carried out. It was the first in situ heater test in Korea. For the test, an adequate design of heater, observation sensors, and data logging system was developed and installed with a consideration of the site condition and the test purposes. It was possible to observe that steep joints are overwhelmingly developed in the test area from a joint survey. The major rock and rock mass properties at the test site could be determined from the thermal and mechanical laboratory tests using the rock cores from the site. From the measured rock temperature distribution, it was possible to observe the influence of the rock joints and the heat flow through tunnel wall. When the heater temperature was maintained as $90^{\circ}C$, the rock temperature at 0.3 m from the heater hole was increased up to $40^{\circ}C$.

Mechanical Properties of Fault Rocks in Korea

  • Seo, Yong-Seok;Yun, Hyun-Seok;Ban, Jae-Doo;Lee, Chung-Ki
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.571-581
    • /
    • 2016
  • To understand the mechanical properties of fault rocks, data from 584 in situ and laboratory tests on fault rocks from 33 tunnels were analyzed. The unit weights of the fault rocks range from 17.3 to $28.2kN/m^3$ and the cohesion and friction angles vary from 5 to 260 kPa and $14.7^{\circ}$ to $44.0^{\circ}$, respectively. The modulus of deformation and elasticity were generally < 200 MPa. In most cases, the uniaxial compressive strength was < 0.5 MPa, and Poisson's ratios were mainly 0.20-0.35. The mechanical properties of individual rock types were analyzed using box plots, revealing that the cohesion values and friction angles of shale and phyllite have relatively wide inter-quartile ranges and that the modulus of deformation and elasticity of shale have the lowest values of all rock types. In the analysis of mechanical properties by components of fault rocks, the largest values were shown in damage zones of individual rock types.

The Mechanical Properties of Rocks Distributed at a Metal Mine in Jeongseon (정선지역 철광산에 분포하는 암석의 역학적 특성)

  • Kim, Jong-Woo;Park, Chan;Kim, Ju-Hwan;Heo, Seok;Kim, Dong-Kyu;Lee, Dong-Kil;Jo, Young-Do;Park, Sam-Gyu
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.231-243
    • /
    • 2015
  • In this study, both in-situ stress measurements and a lot of laboratory rock tests were conducted at a metal mine in Jeongseon, Korea. The stress ratio obtained from in-situ stress measurements showed a tendency to decrease according to depth below surface and its average value was 1.10. The mechanical properties such as unit weight, absorption ratio, porosity, elastic wave velocity, uniaxial compressive strength, Young's modulus, Poisson's ratio, tensile strength, shore hardness, friction angle and cohesion were investigated for the four different rocks mainly distributed at a studied mine, which were dolomite, felsite, granite and magnetite. The mechanical properties of the four different rocks were compared by means of statistical analyses, whereupon the felsite and the granite turned out to have more strength characteristics than the magnetite. The correlation of mechanical properties was also investigated, whereupon a few results against the general correlation were found out. The failure criteria of the four different rocks were finally discussed by means of both Mohr-Coulomb criterion and Hoek-Brown criterion.

Case Study on In-situ Stress Measurement by Over-coring and Its Application to Design of a Pumped Storage Power Plant (오버코어링법에 의한 초기지압측정 및 양수발전소 설계적용사례)

  • Kim, Dae-Young;Lee, Hong-Sung;Lee, Young-Nam
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.90-101
    • /
    • 2007
  • With increasing development of underground space, underground pumped storage power plants, which generate power by felling water in upper reservoir to lower reservoir, have been continuously constructed. For efficient and safe design, construction and maintenance or such power plants, it is very important to understand in-situ stress and the mechanical properties of the surrounding rock mass at the design stage. The power plant presented in this paper is under construction at a depth of $320{\sim}375m$. For stability evaluation of the structure, in-situ stress was measured by over-coring method. Also pressurementer test and a series or laboratory tests were performed to obtain the mechanical properties. Numerical analyses were conducted to check the efficiency of designed support patterns. The results showed that unstable areas occurred partly in the numerical model, and therefore supports were additionally applied. Finally complete stability was obtained and the following excavation has been operated successfully until now.

A Study on the Support Design for Underground Excavation Based on the Rock-Support Interaction Analysis (암반-지보 거동분석에 의거한 지하굴착 지보설계에 관한 연구)

  • 김혁진;조태진;김남연
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • Engineering rock mass classification is extensively used to determine the reasonable support system throughout the tunneling process in the field. Selection of support system based on the results of engineering rock mass classification is simple and straight-forward. However, this method cannot consider the effect of in-situ stresses, mechanical properties of support material, and support installation time on the behavior or rock-support system To handle the various conditions encountered in the underground excavation sites rock-support system. To handle the various conditions encountered in th eunderground excavation sites rock-support interaction program has been developed. This program can analyze the interaction between rock mass and support materials and also can simulate the tunnel excavation-support insstallation process by controlling the support installation time and the stiffness of support system. Practical applicability of this program was verfied by comparing the results of support design to those from rock mass classification for virtual underground excavation at the drilling site KD-06 in Geoje island.

  • PDF

Basic properties survey report on the rock classification (암반 등급분류를 위한 기초 물성조사 보고서)

  • Huh, Ginn
    • Journal of the Korean Professional Engineers Association
    • /
    • v.24 no.3
    • /
    • pp.43-50
    • /
    • 1991
  • On the ground foundation works for Bldg site, Rock classification test can be obtained as follows due to the International Society for Rock Mechanics. 1. In-take test ; Compression strength, Point load test. 2. In-situ test : Schmidt hammer test. Burden test finaly the convinient co-relation table between strength and S.H. test were carried out for site-engineer. This project is one of contineous works regarding to Burden test from Jack leg drill( ø 36mm) to Crawler drill( ø 75mm) use.

  • PDF

A Suggestion of In-situ Rock Mass Evaluation and Correlation between Rock Mass Classfication Methods (현장암반 평가에 관한 제안 및 암반분류법들간의 상관관계 고찰)

  • Kim, Hong-Pyo;Chang, Ho-Min;Kang, Choo-Won;Ko, Chin-Surk
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.133-147
    • /
    • 2010
  • A Suggestion of In-situ Rock Mass Evaluation and Correlation between Rock Mass Classfication MethodsThe purpose of this study is to find out rock mass classification method which is practically applicable to a field and to consider a correlation between the new method and the old method. Rock mass is an aggregate of separated blocks. To express the aggregate, the properties of both intact rock and rock mass should be considered. In this study, therefore, parameters for rock mass description are classified into rock strength and rock structure. Indices for parameters evaluation are obtained from old method and the strength and structure property of rock is described by using those indices. Value of 25 is allocated to each parameter obtained. $RMR_{basic}$ =0.86(X=Method)+14.47 is derived between $RMR_{basic}$ and this study and $RMR^*$ = 0.87(X-Method)+9.20 is derived between revised RMR and this study. Coefficient of determination is $R^2$=0.841 and $R^2$=0.846 each.

On the Evaluation of Construction Standards Based on Seismic Velocities Obtained In-Situ and through Laboratory Rock Tests (현장 및 실내 측정 탄성파 속도에 근거한 암반평가 기준에 대한 고찰)

  • Lee, Kang Nyeong;Park, Yeon Jun
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.230-242
    • /
    • 2017
  • Seismic velocities measured from in-situ tests (n=177) and through rock core samples (n=1,035) are reviewed in light of construction standards, widely used standards as a first-hand approximation of rock classification solely based on seismic velocities. In-situ down hole tests and refraction survey for soft rocks showed seismic velocities of 1,400~2,900 m/s which is faster than those specified in construction standards. For moderate~ hard rocks, in-situ down hole tests and refraction survey showed 2,300~3,800 m/s which roughly corresponds with the range specified in the construction standards. A similar trend is also observed for seismic velocities measured from rock core samples. The observed differences between construction standards and seismic velocities can be explained in two ways. If construction standards are correct the observed differences may be explained with seismic velocities affected by underlying fast velocities and also possibly with selection of intact cores for velocity measurement. Alternatively, construction standards may have intrinsic problems, namely artificial discrete boundaries between soft rocks and moderate rocks, application of foreign standards without consideration of geologic setting and lack of independent verification steps. Therefore, we suggest a carefully designed verification studies from a test site. We also suggest that care must be exercised when applying construction standards for the interpretation and accessment of rock mass properties.

Analysis on Physical and Mechanical Properties of Rock Mass in Korea (국내에 분포하는 암반의 물리·역학적 특성 분석)

  • Seo, Yong-Seok;Yun, Hyun-Seok;Kim, Dong-Gyou;Kwon, O-Il
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.593-600
    • /
    • 2016
  • To understand the mechanical properties of rock masses and intact rock in Korea, data from 4,280 in situ and laboratory tests from 107 tunnels on general national roads were analyzed. The mechanical properties (unit weight, cohesion, friction angle, modulus of deformation, Young's modulus, Poisson's ratio, uniaxial compressive strength, tensile strength, coefficient of permeability, and specific gravity) were analyzed by rock types and strength of rock in each rock type. The results of analysis, the mean specific gravity was highest in gneiss. The coefficient of permeability and Poisson's ratio show the highest mean values in granite and metamorphic rock, respectively. In addition, the unit weight, cohesion and friction angle in sedimentary rock, modulus of deformation, Young's modulus, uniaxial compressive strength and tensile strength in volcanic rock have the highest mean values. The values for each mechanical property showed wide ranges by the heterogeneity and anisotropy of rock masses in spite of detailed analysis by rock type and classification of rocks according to the strength.

A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature (방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구)

  • 이희근;김영근;이희석
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.184-193
    • /
    • 1998
  • In order to dispose radioactive wastes safely, it is needed to understand the mechanical, thermal, fluid behavior of rockmass and physico-chemical interactions between rockmass and water. Also, the knowledge about mechanical and hydraulic properties of rocks is required to predict and to model many conditions of geological structure, underground in-situ stress, folding, hot water interaction, intrusion of magma, plate tectonics etc. This study is based on researches about rock mechanics issues associated with a waste disposal in deep rockmass. This paper includes the mechanical and hydraulic behavior of rocks in varying temperature conditions, thermo-hydro-mechanical coupling analysis in rock mass and deformation behavior of discontinuous rocks. The mechanical properties were measured with Interaken rock mechanics testing systems and hydraulic properties were measured with transient pulse permeability measuring systems. In all results, rock properties were sensitive to temperature variation.

  • PDF