• Title/Summary/Keyword: In-situ condition

Search Result 560, Processing Time 0.022 seconds

In Situ Crosslinked Ionic Gel Polymer Electrolytes for Dye Sensitized Solar Cells

  • Shim, Hyo-Jin;Kim, Dong-Wook;Lee, Chang-Jin;Kang, Yong-Ku;Suh, Dong-Hack
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.424-428
    • /
    • 2008
  • We prepared an ionic gel polymer electrolyte for dye-sensitized solar cells (DSSCs) without leakage problem. Triiodide compound (BTDI) was synthesized by the reaction of benzene tricarbonyl trichloride with diethylene glycol monotosylate and subsequent substitution of tosylate by iodide using NaI. Bisimidazole was prepared by the reaction of imidazole with the triethylene glycol ditosylate under strongly basic condition provided by NaH. BTDI and bisimidazole dissolved in an ionic liquid were injected into the cells and permeated into the $TiO_2$ nanopores. In situ crosslinking was then carried out by heating to form a network structure of poly(imidazolium iodide), thereby converting the ionic liquid electrolytes to a gel or a quasi-solid state. A monomer (BTDI and bisimidazole) concentration in the electrolytes of as low as 30 wt% was sufficient to form a stable gel type electrolyte. The DSSCs based on the gel polymer electrolytes showed a power conversion efficiency of as high as 1.15% with a short circuit current density of $5.69\;mAcm^{-2}$, an open circuit voltage of 0.525 V, and a fill factor of 0.43.

An Overview of New Progresses in Understanding Pipeline Corrosion

  • Tan, M. YJ;Varela, F.;Huo, Y.;Gupta, R.;Abreu, D.;Mahdavi, F.;Hinton, B.;Forsyth, M.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.271-280
    • /
    • 2016
  • An approach to achieving the ambitious goal of cost effectively extending the safe operation life of energy pipeline to 100 years is the application of health monitoring and life prediction tools that are able to provide both long-term remnant pipeline life prediction and in-situ pipeline condition monitoring. A critical step is the enhancement of technological capabilities that are required for understanding and quantifying the effects of key factors influencing buried steel pipeline corrosion and environmentally assisted materials degradation, and the development of condition monitoring technologies that are able to provide in-situ monitoring and site-specific warning of pipeline damage. This paper provides an overview of our current research aimed at developing new sensors and electrochemical cells for monitoring, categorising and quantifying the level and nature of external pipeline and coating damages under the combined effects of various inter-related variables and processes such as localised corrosion, coating cracking and disbondment, cathodic shielding, transit loss of cathodic protection.

On-line Condition Monitoring of Thermal Accelerating Aged Transformer by Capacitive Sensor (전기용량 센서를 이용한 가속 열 열화 변압기의 온라인 상태진단)

  • Kim, Ju-Han;Han, Sang-Ok;Lee, Sei-Hyun;Kim, Han-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07e
    • /
    • pp.82-84
    • /
    • 2005
  • In a transformer, thermal stress is the most influential parameter affecting the aging behavior of insulation system. The aging behavior of insulation system in transformer is determined mainly by the thermal conditions inside the transformer. The thermal stress on the insulation system may occur from operation in a high temperature caused by overloading or local overheating. Thus, this paper investigated the condition monitoring of insulation condition in thermally accelerated aged transformer oils by in-situ sensor. The condition of aged samples was investigated by measurements of relative permittivity i.e. capacitance change by capacitive sensor. Results from the experiments are presented in this paper.

  • PDF

In situ synthesis of acrylic emulsion for improvement of anti corrosion property on steel plate (금속 코팅용 아크릴 올리고머 에멀젼의 합성에 관한 연구)

  • Lee, Soo;Park, Keun-Ho;Jin, Seok-Hwan;Park, Shin-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.485-494
    • /
    • 2008
  • The acrylic coating emulsions were prepared by the emulsion polymerization to protect the surface of steel plate from the corrosion chemicals like acid, base and salt water. MMA(methyl methacrylate), styrene, BA(butyl acrylate), and 2-HEMA(2-hydroxyethyl methacrylate) were used as monomer. KPS(potassium persulfate) and SBS(sodium bisulfite) as redox initiator and SDBS(sodium dodecylbenzene sulfonate) as emulsifier were used on the emulsion polymerization reaction. The most stable in-situ coating was obtained when 10% of MMA was added. Both particle size and quantity in emulsion were decreased as increasing the mount of SDBS. the most stable prepared coating emulsion with polyisocyanate crosslinker showed very high anticorrosion properties on the coated steel layer to salt water, whereas no significant improvement of anticorrosion property to acdic and basic condition it showed.

Remediation of Contaminated Soil by Aqueous Solution Extraction (화학약액 추출법에 의한 오염된 흙의 정화 처리법 연구)

  • 박준범
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.87-98
    • /
    • 1995
  • Laboratory tests were performed on modeling of in situ remediation of contaminated soils by aqueous solution extraction, thus investigating the feasibility of in situ treatments of soil to promote desorption of organic hazardous wastes. The investigation was conducted using phenol, aniline, quinoline, and 2-napthol adsorbed onto a UH40 soil, and various aqueous solutions were used to desorb, or otherwise remove, these organic contaminants. Decontaminants consisted of deionized water as a reference, hydrogen peroxide, acidy, bases, and surfactants. In situ conditions were modeled in the laboratory by permeating potential extracting liquids through reconstituted, contaminated soil specimens under controlled hydraulic gradients and stress condition through flexible wall permeameter tests. Sodium hydroxide desorbed phenol effectively. Aniline was effectively descorbed by nonionic surfactant. Anionic surfactant remediated quinoline and 2-napthol.

  • PDF

Characteristics of Pohang CO2 Geological Sequestration Test Site (포항 이산화탄소 지중저장 시험 사이트 특성)

  • Kim, Seon-Kyoung;Chang, Chandong;Shinn, Youngjae;Kwon, Yikyun
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.175-182
    • /
    • 2018
  • We analyze geological, petrophysical and geomechanical characteristics of a $CO_2$ sequestration test site, Pohang. The target reservoir exists at a depth of 750 m, where porous and permeable sandstones/conglomerates prevail. The reservoir is underlain by thick mudstone formations. We estimate in situ stress conditions using an exploratory wellbore drilled through the target reservoir. The in situ stress condition is characterized by a strike-slip faulting favored stress regime. We discuss various aspects of reservoir fracture pressures and fault reactivation pressures based on the stress magnitudes.

A Study on the Shear Strength Characteristics of Composited Ground applying RAP Method by Large Direct Shear Test (대형직접전단시험에 의한 RAP 복합지반의 전단강도 특성 연구)

  • Chun, Byung-Sik;Seo, Deok-Dong;Kim, Jong-San
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.82-89
    • /
    • 2004
  • To secure stability and availability of Rammed Aggregate Pier method as the foundation of a structure, the shear strength characteristics according to the area replacement ratio of RAP and the relative density of in-situ ground was studied through soil laboratory tests and large direct shear tests in a model ground. As a result, the internal friction angle tends to increase in proportion to in-situ relative density(Very Loose, Loose, Medium) in composite ground formed by the same area replacement ratio of RAP and also increase in proportion to increasing the area replacement ratio(30, 40, 50%) of RAP in the same ground condition. Furthermore, the comparative analysis between the experimental value and theoretical value of the shear strength is carried out.

  • PDF

A Study on the Deterioration Prediction Method of Concrete Structures Subjected to Cyclic Freezing and Thawing (동결융해 작용을 받는 콘크리트 구조물의 내구성능 저하 예측 방법에 관한 연구)

  • Koh, Kyung-Taeg;Kim, Do-Gyeum;Cho, Myung-Sung;Son, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.131-140
    • /
    • 2001
  • In general, the deterioration induced by the freezing and thawing cyclic in concrete structures often leads to the reduction in concrete durability by the cracking or surface spalling. If it can prediction of concrete deterioration subjected to cyclic freezing and thawing, we can rationally do the design of mix proportion in view of concrete durability and the maintenance management of concrete structures. Therefore in this study a prediction method of deterioration for concrete structures subjected to the irregular freezing and thawing is proposed from the results of accelerated laboratory freezing and thawing test using the constant temperature condition and the in-situ weathering data. Furthermore, to accurately predict the concrete deterioration, a method of modification for the effect of hydration increasing during rapid freezing and thawing test is investigated.

  • PDF

A Study on the Behavior Prediction of Underground Structures by Back Analysis (역해석에 의한 지하구조체의 거동예측에 관한 연구)

  • 장정범;김문겸
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.139-145
    • /
    • 1998
  • The reliable estimation of the system parameters and the accurate prediction of the system behavior are important to design underground structures safely and economically. Especially, the elastic modulus and the in-situ stresses are very important parameters in predicting the behavior of the underground structure. Therefore, the back analysis using the field measurement data is developed to determine accurately the elastic modulus and the in-situ stresses of the underground structural system in this study. A back analysis using the combined finite and boundary element is developed. It can consider the far field boundary condition and is efficient in computation. In this study, a back analysis is performed to predict behaviors of underground structures for the real construction site. The comparison between the results of the back analysis with field measurement data and the obtained material properties from the field test shows good agreement for the real construction site.

  • PDF

Effect of pH and Iron/Manganese Ion on TiO2 Mediated Photocatalytic Inactivation of Index Microorganisms (LNAPL을 이용한 지중 산소전달 향상: (I) Abiotic Condition)

  • Ha, Jeong-Hyub;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.307-311
    • /
    • 2004
  • The objective of this work is to evaluate the hypothesis that a good technique for supplying oxygen to the saturated zone in the presence of light nonaqueous phase liquid (LNAPL) pool contamination at the water table is to pass air through the unsaturated zone above the pool. This hypothesis was evaluated in experimental studies performed using a bench-scale, sand-tank reactor, Steady-state abiotic experiments in the sand-tank reactor with air flowing through the reactor headspace demonstrated that oxygen supply through the water table interface into the saturated zone was enhanced when an LNAPL (dodecane) pool was present at the water table. These experimental results confirmed the hypothesis that an LNAPL pool can serve as a high concentration oxygen source to the oxygen-limited area beneath the pool and, as a result, enhance the in situ biodegradation rate.