• Title/Summary/Keyword: In-situ condition

Search Result 562, Processing Time 0.032 seconds

A Case Study on Elephant Foot Method for Railway Tunneling in Large Fault Zone (대규모 단층대구간에서의 철도터널 우각부 보강공법 적용성 연구)

  • Lee, Gilyong;Oh, Jeongho;Cho, Kyehwan;Lee, Doosoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1161-1167
    • /
    • 2016
  • In this study, an attempt was made to conduct a case study on the development of ground expansive displacement due to lack of bearing capacity of original ground in spite of applying reinforcement treatments that intended to enhance the stability of big size high-speed rail tunnel in large fault zone. For the purpose of this, in-situ measurements made in the middle of excavation stage were analyzed in order to characterize ground responses and numerical analysis was performed to evaluate the effectiveness of reinforcement technique such as elephant foot method applied for this site via comparing with field monitoring measurements. In addition, further numerical studies were carried out to investigate the influence of leg pile installation angle and length, which is one of types of elephant foot method. The results revealed that the optimum condition for the leg pile installation is to maintain 45 degree of installation angle along with 6 meter of embedment depth.

A Study on Biogas Production from Low Rank Coal in a Column Experiment (저품위 석탄을 충전한 칼럼실험에서의 바이오가스 생산에 관한 연구)

  • Yoon, Seok-Pyo;Lim, Hak-Sang;Yun, Yeo-Myeong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.57-65
    • /
    • 2017
  • In a column experiment with low rank coal, rice straw was additionally supplied to induce methane gas generation by microorganisms in the state of supplying microorganisms and nutrients, and long-term biogas production characteristics were observed. When the weight ratio of the rice straw to coal was 0.04 or less, there was no significant gas generation. At 0.08, the biogas was generated for about 90 days. However, the methane gas generation was only 5% compared with the vial test result at optimum condition. Therefore, in order to produce biogas in the coal deposit in situ, a reactor that operates at COD concentration of 2000 mg/L or more at a ratio of 1:3 or more of rice straw to coal should be installed on the ground or under the ground. Liquid from the column filled with coal and rice straw and a liquid from vial containing rice straw were analyzed by microbial community analysis using pyrosequencing method, and compared the dominant microbial species among the two samples. In terms of the uniformity and diversity of the bacteria, the coal-filled column showed various species distribution, which has shown to be a disadvantageous microbial distribution to methane production.

Load Transfer Mechanism of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 하중전이기구)

  • ;Cho Sung-Min;Jung Sung-Jun;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.187-196
    • /
    • 2005
  • Since the allowable bearing capacities of piles in weathered/fractured rock are mainly governed by settlement, the load-displacement behavior of pile should be known accurately. To predict pile head settlement at the design stage, the exact understanding of the load-transfer mechanisms is essential. Therefore, in this research, the load-transfer mechanism of drilled shaft socketed into weathered rock was investigated. For the investigation, five cast-in-place concrete piles with diameters of 1,000 mm were socketed into weathered gneiss. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. A comprehensive field/laboratory testing program on weathered rock at the Held test sites was also performed to describe the in situ rock mass conditions quantitatively. And then, the effect of rock mass condition on the load transfer mechanism was investigated. The f-w (side shear resistance-displacement) curve of the pile in moderately weathered rock reached to yielding point at a for millimeter displacements, and after yielding point, the rate of resistance increment dramatically decreased. However, the f-w curve in the highly/completely weathered rock did not show the obvious yielding point, and the resistance gradually increased showing the hyperbolic pattern until relatively high displacement (>15 mm). The q-w (end bearing resistance-displacement) curves showed linear response at least until the base displacement of approximately 10 mm, regardless of rock mass conditions.

Application of Slip-line Method to the Evaluation of Plastic Zone around a Circular Tunnel (원형터널 주변의 소성영역 평가를 위한 slip-line 해석법 활용)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.32 no.5
    • /
    • pp.312-326
    • /
    • 2022
  • The generalized Hoek-Brown (GHB) criterion, which is recognized as one of the standard failure conditions for rock mass, is specialized for rock engineering applications and covers a wide range of rock mass conditions. Accordingly, many research efforts have been devoted to the incorporation of this criterion into the stability analysis of rock structures. In this study, the slip-line analysis method, which is a kind of elastoplastic analysis method, is combined with the GHB failure criterion to derive analytical equations that can easily calculate the plastic radius and stress distribution in the vicinity of the circular tunnel. In the process of derivation of related formulas, it is assumed that the behavior of rock mass after failure is perfectly plastic and the in-situ stress condition is hydrostatic. In the formulation, it is revealed that the plastic radius can be calculated analytically using the two respective tangential friction angles corresponding to the stress conditions at tunnel wall and elastic-plastic boundary. It is also shown that the plastic radius and stress distribution calculated using the derived analytical equations coincide with the results of Lee & Pietruszczak's numerical method published in 2008. In the latter part of this paper, the influence of the quality of the rock mass on the size of the plastic zone, the stress distribution, and the change of the tangential friction angle was investigated using the derived analytical equations.

Study on Moye's Method for Analysis of Constant-Head Tests Conducted in Crystalline Rock (결정질 암반에서 Moye 방법을 이용한 정압시험의 해석에 대한 고찰)

  • Kyung-Woo Park;Byeong-Hak Park;Sung-Hoon Ji;Kang-Kun Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.519-530
    • /
    • 2023
  • Moye's analytical solution was examined as a method for constant-head tests under steady-state conditions, and results were compared with transient-state analyses in in situ hydraulic tests. The sensitivity of hydraulic conductivities calculated using Moye's method increased with the length of the test section, which should be as large as possible under test conditions. Particularly in low-permeability media with less than 10-8 m/sec of hydraulic conductivity, hydraulic conductivity is lower than that under transient-state conditions and can be recalculated by adjusting the boundary between radial and spherical flow assumed in Moye's equation. Constant-head tests performed in the research borehole at the KAERI Underground Research Tunnel (KURT) indicated that transmissivities derived from the constant-head withdrawal test under transient-state conditions in low-permeability media were higher than those derived from steady-state tests, likely because the groundwater flow boundary was smaller than the "half of the test-section length"assumed by Moye's equation. When interpreting constant-head test results for crystalline rock, the hydrogeological properties of the medium may be better understood by considering assumed conditions accompanying analysis of the steady-state condition and comparing them with results for the transient-state analysis, rather than simply assuming properties based on steady-state analyses.

Efficient Outlier Detection of the Water Temperature Monitoring Data (수온 관측 자료의 효율적인 이상 자료 탐지)

  • Cho, Hongyeon;Jeong, Shin Taek;Ko, Dong Hui;Son, Kyeong-Pyo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.285-291
    • /
    • 2014
  • The statistical information of the coastal water temperature monitoring data can be biased because of outliers and missing intervals. Though a number of outlier detection methods have been developed, their applications are very limited to the in-situ monitoring data because of the assumptions of the a prior information of the outliers and no-missing condition, and the excessive computational time for some methods. In this study, the practical robust method is developed that can be efficiently and effectively detect the outliers in case of the big-data. This model is composed of these two parts, one part is the construction part of the approximate components of the monitoring data using the robust smoothing and data re-sampling method, and the other part is the main iterative outlier detection part using the detailed components of the data estimated by the approximate components. This model is tested using the two-years 5-minute interval water temperature data in Lake Saemangeum. It can be estimated that the outlier proportion of the data is about 1.6-3.7%. It shows that most of the outliers in the data are detected and removed with satisfaction by the model. In order to effectively detect and remove the outliers, the outlier detection using the long-span smoothing should be applied earlier than that using the short-span smoothing.

A Feasibility Study on the Application of TVDI on Accessing Wildfire Danger in the Korean Peninsula (한반도 지역 산불 발생 위험도 예측에 TVDI 적용 가능성 고찰)

  • Kim, Kwang Nyun;Kim, Seung Hee;Won, Myoung Soo;Jang, Keun Chang;Choi, Won Jun;Lee, Yun Gon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1197-1208
    • /
    • 2019
  • Wildfire is a major natural disaster affecting socioeconomics and ecology. Remote sensing data have been widely used to estimate the wildfire danger with an advantage of higher spatial resolution. Among the several wildfire related indices using remote sensing data, Temperature Vegetation Dryness Index (TVDI) assesses wildfire danger based on both Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST). Although TVDI has physical advantages by considering both weather and vegetation condition, previous studies have shown TVDI does not performed well compare to other wildfire related indices over the Korean Peninsula. In this study we have attempted multiple modification to improve TVDI performance over the study region. In-situ measured air temperature was employed to increase accuracy, regression line was generated using monthly data to include seasonal effect, and TVDI was calculated at each province level to consider vegetation type and local climate. The modified TVDI calculation method was evaluated in wildfire cases and showed significant improvement in wildfire danger estimation.

Numerical Analysis on the Behavior of Revetment Reinforced by Sand Compaction Pile According to Area Replacement Ratio (수치해석을 이용한 모래다짐말뚝 치환율에 따른 호안 구조물의 거동 분석)

  • Kim, Byoung-Il;Bong, Tae-Ho;Han, Jin-Tae;Jang, Young-Eun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.3
    • /
    • pp.1-8
    • /
    • 2018
  • Sand compaction pile (SCP) is a ground improvement method which is used to secure the stability of the soft ground by using a type of replacement pile filled with coarse grained material. The behavior characteristics of the SCP, which is frequently used for improving both the onshore and offshore ground, is governed by the ground condition, the installation method, and replacement ratio. Therefore, the stability of the SCP in terms of the bearing capacity and displacement needs to be evaluated considering both the design values and in-situ conditions of construction site. In this study, numerical analysis is carried out based on the conditions of 00 revetment construction site in South Korea where unexpected displacement occurred during construction of SCP. Based on the analysis results, the displacement of the revetment structure according to the replacement ratio of the SCP was compared to the result calculated from design formulas. The results showed that the lateral displacement can be exceeded the reference value from proposed criteria regardless of increased replacement ratio of SPC. It is also confirmed that the behavior of the structure according to the replacement ratio of SPC in not reflected in the existing calculation methods. Therefore, the stability of the SCP composite ground should be examined through the site inspection after the SCP construction.

Characteristics of Landslide Occurrence and Change in the Matric Suction and Volumetric Water Content due to Rainfall Infiltration (강우침투에 의한 산사태 발생 및 모관흡수력과 체적함수비의 변화 특성에 관한 연구)

  • Seo, Won-Gyo;Choi, Junghae;Chae, Byung-Gon;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.475-487
    • /
    • 2017
  • We performed landslide flume tests to analyze characteristics of landslide occurrence and change in the ground materials due to rainfall infiltration. The test apparatus is composed of flume, rainfall simulator, and measurement sensors and landslides were triggered by heavy rainfall (Intensity=200 mm/hr) sprinkled at the above of an artificial slope. The measurement sensors for matric suction and volumetric water content were installed with 3 sets at shallow (GL-0.2 m), middle (GL-0.4 m), and deep depth (GL-0.6 m) in the slope and the tests were performed with in-situ, loose, and dense condition of each weathered soils of granite, gneiss, and mudstone. The analyses show that surface erosion was dominant in initial time of the test due to heavy rainfall and then landslides occur following locally happened transverse tension cracks. The characteristics of landslide were both shallow failure because of a spread of wetting front induced by the rainfall infiltration and retrogressive failure. While the matric suction was decreased rapidly without any precursor in the soil saturation, the volumetric water content was increased gradually, reached its maximum value, and then decreased rapidly with landslide.

Effects of Photoperiod and Temperature on the Gonadal Activity in Small Filefish, Rudarius ercodes (그물코쥐치, Rudarius ercodes의 생식활동에 미치는 광주기 온도 영향)

  • LEE Taek Yuil;HANYU Isao;FURUKAWA Kiyoshi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.6
    • /
    • pp.523-528
    • /
    • 1984
  • The small filefish, Rudarius ercodes, generally spawning from mid May to early October in the natural habitat, was exposed to various photoperiod and temperature regimes. These environmental effects on the gonad activity, regression and recrudescence were experimentally investigated based on the mechanism of reproductive cycle. Spawning season was initiated in the early spring with the gonad activated by long photoperiod(13L) and stimulated by compensatory temperature rising. Even when the gonad activated readily at the above critical daylength (12L to 13L)was kept back at the below if, it went on maturing. At the end of spawning period (mid September), since the shortening of daylength (12L) resulted in the gonad regression regardless of temperature, the short daylength might be related to the termination of spawning in situ. When the regressive gonad at the post spawning period was treated by the above 13L: $20^{\circ}C$ condition, it could recrudesce and bring forth even spawning. From this fact, the feasible control of annual reproductive cycle of small filefish was recognized. But even in the long daylength, the temperature above $28^{\circ}C$ was preventive of gonad maturation.

  • PDF