• Title/Summary/Keyword: In-situ Test

Search Result 1,140, Processing Time 0.033 seconds

Evaluation on Ground Characteristics of Weathered Granite Masses by Pressuremeter Test (공내재하시험에 의한 화강 풍화암의 지반 특성 평가)

  • Lee, Kwang-Hee;Bae, Kyung-Tae;Chang, Seo-Man;Lee, Chong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.831-838
    • /
    • 2004
  • To study on mechanical characteristics of weathered granite masses are difficult because of undisturbanced sampling and in-situ test. Generally, pressuremeter test is widely used to investigate the behavior of weathered rock masses. However, it has many problems to get a limit pressure because of cavity collapse, membrane damage, ete. This study aims to evaluate the mechanical characteristics of weathered granite masses using in-situ pressuremeter test and numerical analysis depending on the ratio of length and diameter of the membrane(L/D=5, 8, 10, 15, 20). Test results and data are shown that strength parameters are reduced exponentially varing weathering degree, and numerical analysis results are approximately coincided with the test results. And the ratio of length and diameter of the membrane arc not affected the parameters such as modulus of pressuremeter, shear modulus, etc. But limit pressure is increased decreasing membrane length based on numerical analysis. On the other hand, increasing the membrane length, yield pressure is decreased and plastic radius is increased in the case of same weathering degree.

  • PDF

Stability Analysis of Reinforced Retaining Wall with Steel Supported Face (강재지주 전면판 보강토 옹벽의 안정성 평가)

  • Kim, Ki Il;Kim, Byoung Il;Lee, Yeong Saeng;Lee, Soon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2C
    • /
    • pp.75-82
    • /
    • 2011
  • Recently, a new reinforced retaining wall with light steel support face has been developed. In this study, full size in-situ test is carried out to investigate the stability of the new reinforced retaining wall. The lateral displacement of wall, lateral earth pressure, and settlement of the reinforced retaining wall are measured in the full size test. And numerical analysis by 3-D finite element method is also carried out to compare the test results with those of the analysis. From the full size in-situ test, the maximum lateral displacement of wall is 46mm(0.009H) and the maximum settlement is 21.5mm. And comparing these values with those of numerical analysis, it is confirmed that the new reinforced retaining wall with light steel support face is stable and applicable.

Experimental study of Kaiser effect under cyclic compression and tension tests

  • Chen, Yulong;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.203-209
    • /
    • 2018
  • Reliable estimation of compressive as well as tensile in-situ stresses is critical in the design and analysis of underground structures and openings in rocks. Kaiser effect technique, which uses acoustic emission from rock specimens under cyclic load, is well established for the estimation of in-situ compressive stresses. This paper investigates the Kaiser effect on marble specimens under cyclic uniaxial compressive as well as cyclic uniaxial tensile conditions. The tensile behavior was studied by means of Brazilian tests. Each specimen was tested by applying the load in four loading cycles having magnitudes of 40%, 60%, 80% and 100% of the peak stress. The experimental results confirm the presence of Kaiser effect in marble specimens under both compressive and tensile loading conditions. Kaiser effect was found to be more dominant in the first two loading cycles and started disappearing as the applied stress approached the peak stress, where felicity effect became dominant instead. This behavior was observed to be consistent under both compressive and tensile loading conditions and can be applied for the estimation of in-situ rock stresses as a function of peak rock stress. At a micromechanical level, Kaiser effect is evident when the pre-existing stress is smaller than the crack damage stress and ambiguous when pre-existing stress exceeds the crack damage stress. Upon reaching the crack damage stress, the cracks begin to propagate and coalesce in an unstable manner. Hence acoustic emission observations through Kaiser effect analysis can help to estimate the crack damage stresses reliably thereby improving the efficiency of design parameters.

In-situ Stabilization of Heavy Metal Contaminated Farmland Soils Near Abandoned Mine, using Various Stabilizing Agents: Column Test Study (폐광산 주변 중금속 오염 농경지 토양복원을 위한 다양한 첨가제의 안정화 효율 비교: 컬럼시험연구)

  • Lee, Sang-Hoon;Cho, Jung-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.4
    • /
    • pp.45-53
    • /
    • 2009
  • This study concerned remediation of heavy metal contaminated farmland soils near abandoned mine, using stabilization method, with particular emphasis on the remediating the soils contaminated with multi-elements. In this study, stabilizing heavy metals based on 'In-situ chemical fixation' has been applied to the soil collected from an abandoned mine in Korea, using column test, with various stabilizing agents, including $FeSO_4$, $KMnO_4$, sludge (collected from coal mine drainage treatment pond), zero-valent iron (ZVI), zeolite and $CaCO_3$. Sixty five-days operation of the flow-through columns yield $FeSO_4\;+\;KMnO_4$ and zeolite are efficient on reducing As leaching from the soil. ZVI and sludge are reducing the leaching of Cu. Although $FeSO_4\;+\;KMnO_4$ seem to be efficient for most heavy metals, high pH in the initial stage of test enabled high leaching of the heavy metals, whereas fixation of the heavy metals maintain throughout the rest of the test period, with increasing pH up to around 6. Addition of some alkaline agent may inhibit the low pH during the application. The column test was also run as two set: one set incubated with deionized water for 72 hours prior to starting the test, and the other without incubation. The incubated set demonstrated better stabilizing efficiency, indicating the potential optimized operation method.

유류오염토양 복원을 위한 설계인자 선정에 관한 연구

  • 조장환;전권호;서창일;박정구
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.293-296
    • /
    • 2004
  • The objective of this study was to decide the designing factor for remediaton of the contaminated site. The soil and ground-water samples were analyzed and hydro- geological characteristics was assayed for the survey of pollution level. Also air-permeability test and MPN(most probable number) test were conducted for selecting the designing factor. The contaminants were mainly found in north-west part of the site and were expected to move toward the south. Ex-situ technology was expected more useful than in-situ one with the results of air-permeability test saying that air permeability was relatively low. Additional microbes were expected for remediation efficiency because residual microbes were loosely populated. The choosing of the designing factor was requisite for remediation of contaminated site.

  • PDF

유류오염토양 복원을 위한 지중 오존산화기술의 현장규모 적용

  • 정해룡;손규동;최희철;김수곤;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.172-175
    • /
    • 2003
  • Field scale application of in-situ ozonation were carried out for remediation of variably saturated soils contaminated with diesel fuel with 3 dimensional test cell (3m$\times$2m$\times$2m). After 20 days of ozone injection, more than 90% of removal rate was observed through the 3-D test cell. This result might be caused by uniform distribution, relatively low oxidant demand, and low water content of soils, as well as high oxidation potential of ozone. However, less than 50 % of injected ozone was monitored through the 3-D test cell even after 20 days of injection.

  • PDF

A Decade's Experiences on the Hydrofracturing In-Situ Stress Measurement for Tunnel Construction in Korea (암반터널 설계를 위한 수압파쇄 초기지압 측정의 10여년 간의 경험)

  • Choe, Seong-Ung;Park, Chan;Sin, Jung-Ho;Sin, Hui-Sun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.03a
    • /
    • pp.79-88
    • /
    • 2008
  • Since the hydraulic fracturing field testing method was introduced first to Korean geotechnical engineers in 1994, there have been lots of progresses in a hardware system as well as an interpretation tool. The hydrofracturing system of first generation was the pipe-line type, so it was not easy to handle. It had been modified to a wire-line system at their second generation. It was more compact one but it also needed an additional air-compressor. Our current system is much more compact and operated by all-in-one system, so it doesn't need an additional air-compressor. With a progress in a hardware system, the software for analyzing the in-situ stress regime has also been progressed. For example, the shut-in pressure, which is the most ambiguous parameter to be obtained from hydrofracturing pressure curves, can now be acquired automatically from the various methods. While the hardware and software for hydrofracturing tests are being developed during the last decade, the author could accumulate the field test results which can cover the almost whole area of South Korea. Currently these field data are used widely in a feasibility study or a preliminary design step for tunnel construction in Korea. Regarding the difficulties in a site selection and a test performance for the in-situ stress measurement at an off-shore area, the in-situ stress regime obtained from the field experiences in the land area can be used indirectly for the design of a sub-sea tunnel. From the hydrofracturing stress measurements, the trend of magnitude and direction of in-situ stress field was shown identically with the geological information in Korea.

  • PDF

In-Situ Evaluation Technique for Hydraulic Conductivity in Excavation Disturbed Zone (EDZ) (굴착영향영역(EDZ) 투수특성의 실험적 평가기술)

  • Kim, Hyung-Mok;Ryu, Dong-Woo;Synn, Joong-Ho
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.91-97
    • /
    • 2008
  • In this paper, in-situ technique for measuring hydraulic conductivity of Excavation Disturbed Zone (EDZ) in a direct way and its application to an Underground Research Laboratory (URL) site were introduced. It was understood that both the EDZ oriented test equipment as a hardware and analysis/evaluation technique as a software should be integrated for upgrading a quality of estimated EDZ hydraulic conductivity. The well-estimated EDZ hydraulic conductivity is expected to enhance a reliability of stability evaluation for caverns under groundwater table and design of a waterproof or drainage system as well as a grout system.

The Outlet Temperature Prediction of In-Situ Thermal Response Test using CFD Analysis (CFD 해석을 이용한 현장 열응답 시험의 출구온도 예측)

  • Sim, Yong-Sub;Lee, Hee-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.28-35
    • /
    • 2016
  • The in-situ thermal response test for the design of a ground heat exchanger of geothermal heat pumps have difficulty in predicting the outlet temperature according to the variation of conditions due to the expense and time. This paper suggests a 3-D CFD analysis method to predict the heat transfer performance of vertical type ground heat exchanger, which is mostly used in national, and the outlet temperature and the slope of two in-situ thermal response tests were compared to test the proposed CFD reliability. The results of CFD analysis showed that the outlet temperature was predicted to within $0.5^{\circ}C$ of the actual value and the slope was predicted to within 1.6%. The reliability of the CFD analysis method was confirmed using this process, and the outlet temperature prediction of the two in-situ thermal response tests was obtained by changing ${\pm}20%$ of the flow rate and the effective thermal conductivity conditions, respectively. The results of CFD analysis showed that the outlet temperature of Case 1 was 28.0 (-20%) and $29.6^{\circ}C$ (+20%) for the flow rate variation and $29.6^{\circ}C$ (-20%) and $28.0^{\circ}C$ (+20%) for the effective thermal conductivity variation, and the outlet temperature of Case 2 was 28.4 (-20%) and $29.8^{\circ}C$ (+20%) for the flow rate variation and $29.7^{\circ}C$(-20%) and $28.4^{\circ}C$(+20%) for the effective thermal conductivity variation.