• 제목/요약/키워드: In-plane displacement

검색결과 727건 처리시간 0.029초

Experimental vs. theoretical out-of-plane seismic response of URM infill walls in RC frames

  • Verderame, Gerardo M.;Ricci, Paolo;Di Domenico, Mariano
    • Structural Engineering and Mechanics
    • /
    • 제69권6호
    • /
    • pp.677-691
    • /
    • 2019
  • In recent years, interest is growing in the engineering community on the experimental assessment and the theoretical prediction of the out-of-plane (OOP) seismic response of unreinforced masonry (URM) infills, which are widespread in Reinforced Concrete (RC) buildings in Europe and in the Mediterranean area. In the literature, some mechanical-based models for the prediction of the entire OOP force-displacement response have been formulated and proposed. However, the small number of experimental tests currently available has not allowed, up to current times, a robust and reliable evaluation of the predictive capacity of such response models. To enrich the currently available experimental database, six pure OOP tests on URM infills in RC frames were carried out at the Department of Structures for Engineering and Architecture of the University of Naples Federico II. Test specimens were built with the same materials and were different only for the thickness of the infill walls and for the number of their edges mortared to the confining elements of the RC frames. In this paper, the results of these experimental tests are briefly recalled. The main aim of this study is comparing the experimental response of test specimens with the prediction of mechanical models presented in the literature, in order to assess their effectiveness and contribute to the definition of a robust and reliable model for the evaluation of the OOP seismic response of URM infill walls.

회전하는 환상 디스크의 면내 고유진동 해석 (In-plane Natural Vibration Analysis of a Rotating Annular Disk)

  • 송승관;곽동희;김창부
    • 한국소음진동공학회논문집
    • /
    • 제19권2호
    • /
    • pp.208-216
    • /
    • 2009
  • In this paper, we present the equations of motion by which the natural vibration of a rotating annular disk can be analyzed accurately. These equations are derived from the theory of finite deformation and the principle of virtual work. The radial displacements of annular disk at the steady state where the disk is rotating at a constant angular velocity are determined by non-linear static equations formulated with 1-dimensional finite elements in radial direction. The linearlized equations of the in-plane vibrations at the disturbed state are also formulated with 1-dimensional finite elements in radial direction along the number of nodal diameters. They are expressed as in functions of the radial displacements at the steady state and the disturbed displacements about the steady state. In-plane static deformation modes of an annular disk are used as the displacement functions for the interpolation functions of the 1-dimensional finite elements. The natural vibrations of an annular disk with different boundary conditions are analyzed by using the presented model and the 3-dimensional finite element model to verify accuracy of the presented equations of motion. Its results are compared and discussed.

CT 시편을 이용한 박판재료의 파괴인성 특성 (Fracture toughnesses of thin sheet materials by using CT specimens)

  • 이억섭;이윤표;강인모;김선용;김승권
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2090-2095
    • /
    • 1997
  • The plane stress fracture toughness for thin aluminum alloy(2024-T3 and 7075-T6) specimens are characterized by using compact-tension (CT) specimens. Anti-buckling plates were fabricated on both sides of the thin CT specimens to prevent the buckling phenomena which caused by the 45.deg. C plastic yielding at the crack tip under the plane stress condition. The plane stress fracture toughnesses determined by three different procedures are compared with each others. The plane stress fracture toughnesses are also compared with a few published values which were determined by using center-cracked panel specimens.

Vibration analysis of laminated plates with various boundary conditions using extended Kantorovich method

  • Singhatanadgid, Pairod;Wetchayanon, Thanawut
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.115-136
    • /
    • 2014
  • In this study, an extended Kantorovich method, employing multi-term displacement functions, is applied to analyze the vibration problem of symmetrically laminated plates with arbitrary boundary conditions. The vibration behaviors of laminated plates are determined based on the variational principle of total energy minimization and the iterative Kantorovich method. The out-of-plane displacement is represented in the form of a series of a sum of products of functions in x and y directions. With a known function in the x or y directions, the formulation for the variation of total potential energy is transformed to a set of governing equations and a set of boundary conditions. The equations and boundary conditions are then numerically solved for the natural frequency and vibration mode shape. The solutions are verified with available solutions from the literature and solutions from the Ritz and finite element analysis. In most cases, the natural frequencies compare very well with the reference solutions. The vibration mode shapes are also very well modeled using the multi-term assumed displacement function in the terms of a power series. With the method used in this study, it is possible to solve the angle-ply plate problem, where the Kantorovich method with single-term displacement function is ineffective.

Vision-Based Eyes-Gaze Detection Using Two-Eyes Displacement

  • Ponglanka, Wirote;Kumhom, Pinit;Chamnongthai, Kosin
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.46-49
    • /
    • 2002
  • One problem of vision-based eye-gazed detection is that it gives low resolution. Base on the displacement of the eyes, we proposed method for vision-based eye-gaze detection. While looking at difference positions on the screen, the distance of the centers of the eyes change accordingly. This relationship is derived and used to map the displacement to the distance in the screen. The experiments are performed to measure the accuracy and resolution to verify the proposed method. The results shown the accuracy of the screen mapping function for the horizontal plane are 76.47% and the error of this function be 23.53%

  • PDF

Kinematic Displacement Theory of Planar Structures

  • Tayyar, Gokhan Tansel;Bayraktarkatal, Ertekin
    • International Journal of Ocean System Engineering
    • /
    • 제2권2호
    • /
    • pp.63-70
    • /
    • 2012
  • This paper presents a new curvature based kinematic displacement theory and a numerical method to calculate the planar displacement of structures from a geometrical viewpoint. The theory provides an opportunity to satisfy the kinematic equilibrium of a planar structure using a progressive numerical approach, in which the cross sections are assumed to remain plane, and the deflection curve was evaluated geometrically using the curvature values despite being solved using differential equations. The deflection curve is parameterized with the arc-length, and was taken as an assembly of the chains of circular arcs. Fast and accurate solutions of most complex deflections can be obtained with few inputs.

Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation

  • Varello, Alberto;Lamberti, Alessandro;Carrera, Erasmo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.310-323
    • /
    • 2013
  • In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.

무지 외반증의 치료에 대한 고찰 (Approach for the Treatment on Hallux Valgus)

  • 이성현;이영창
    • 대한족부족관절학회지
    • /
    • 제23권4호
    • /
    • pp.143-148
    • /
    • 2019
  • Although many patients who undergo bunion repair do well and have satisfactory results, a critical evaluation of these results shows the potential for improvement. Metatarsal deformity of the hallux valgus is a 3-dimensional deformity, including rotation in the coronal plane. Theoretically, it is important to understand the 3-dimensional displacement of the first metatarsal for correcting the deformities of valgus rotation in the frontal plane. Yet the current methods of metatarsal osteotomy principally attempt to correct the deformity in the transverse plane. The modified technique for the Lapidus procedure can be used in a variety of hallux valgus conditions and severities, and the early results suggest that a powerful correction can be maintained. In addition, efforts have been made to correct the 3-dimensional deformity by performing metatarsal shaft osteotomy. In the case of degenerative arthritis, first metatarsophalangeal joint arthrodesis is a good option to correct the 3-dimensional deformation. Correction of the 3-dimensional deformity, including a rotational deformity in the frontal plane of the metatarsals, should be considered when selecting surgical treatment and is essential for achieving a good prognosis for patients with hallux valgus. This article reviews the classification and treatment of hallux valgus for correction of the 3-dimensional deformity.

초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가 (Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage)

  • 곽이구;김재열;한재호;김영석;안재신;노기웅
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.422-428
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system (100mm stroke and ${\pm}$ 10nm positioning accuracy) with single plane X-Y stage are materialized.

  • PDF

초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가 (Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage)

  • 박기형;김재열;곽이구
    • 한국공작기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system(100mm stroke and $\pm$ l0nm positioning accuracy) with single plane X-Y stage are materialized.