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Abstract 
 

This paper presents a new curvature based kinematic displacement theory and a numerical method to calculate 

the planar displacement of structures from a geometrical viewpoint. The theory provides an opportunity to satisfy 

the kinematic equilibrium of a planar structure using a progressive numerical approach, in which the cross sec-

tions are assumed to remain plane, and the deflection curve was evaluated geometrically using the curvature val-

ues despite being solved using differential equations. The deflection curve is parameterized with the arc-length, 

and was taken as an assembly of the chains of circular arcs. Fast and accurate solutions of most complex deflec-

tions can be obtained with few inputs.  
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1. Introduction  

The equilibrium of internal and external forces can 

be satisfied only if the axial/in-plane stresses are de-

fined precisely. Therefore, correct deflection model-

ing is essential. In addition, second-order theory must 

be considered with accurate deflection modeling for 

reliable results in post-buckling or in post-collapse. 

There are several methods in literature to define the 

deflection. Even if it is a numerical method, these 

methods employ models based on differential equa-

tions with assumptions. Even the smallest deviations 

from these assumptions can be dominant with respect 

to equilibrium when large rotations and large deflec-

tions are considered.  

In this study, the curvature was used directly in de-

flection geometry. The deflection curve was obtained 

by arc length parameterization. The deflection curve 

of the structure can be modeled easily and determined 

using the curvature values, even if material or geo-

metrical nonlinearities occur [1]. Furthermore, pro-

gressive collapse analysis can be obtained using a 

single numerical progressive procedure by curvature 

values or curvature function, regardless of the struc-

ture being in the elastic, plastic, or etc. Therefore, the 

relationship between the curvature and the deflection 

curve is kinematic. 

Curvature has physical and geometrical meaning. 

The proposed theory prescribes how to parameterize 

the deflection curve with curvature values. This curve 

is represented by a sequence of arcs within a user-

specified tolerance, and the relationship between arcs 

is established using proposed theory. Therefore, the 

most complex curves can be modeled without the 

assistance of polynomials or trigonometric series. The 

proposed theory allows the deflection to be removed 

geometrically without differential equations, thereby 

allowing fast and reliable deflection calculations. 

Equilibrium with external and internal forces is al-

ways available, even in post-collapse, until fracture 

occurs.  

According to this assumption, even the stress distri-

bution of the section is nonlinear; the strain distribu-

tion should be linear and proportional to the curvature. 

The range of this study is limited to the planar motion 

of structures for simplicity. The shear effect and tor-

sion are not considered in the proposed theory. One–

dimensional (1-D) structures, such as rods, beam 

columns, and stiffened plates can be included in this 
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category.  

A search of the publications recorded by the ‘‘ISI-

Web of Science,” revealed, no paper on how to obtain 

the theory of deflection curves with the geometrical 

use of curvature values where the deflection curve is 

taken as an assembly of chains of circular arcs.  

The proposed theory was adapted to a second-order 

theory-based numerical method for a one-dimensional 

(1-D) structure [1]. The results of the proposed meth-

od were used in Smith’s method to perform progres-

sive collapse analysis of a Very Large Crude Carrier 

“Energy Consideration” [1].  

The main motivation of this approach was to reduce 

the computational and modeling times, and obtain 

more accurate solutions. The theory and concept of 

the proposed method are presented in the next two 

sections with a basic mathematical definition of a 1-D 

structure. The method is presented in Section 4 with a 

simple application in Section 5. Section 6 is devoted 

to a discussion and conclusion.   

 

2. Structure  

All structures are physically three dimensional, 

but can be reduced to 2-D or 1-D representations 

with certain assumptions. The beams, beam-

columns, rods, and stiffened plates can be classified 

as 1-D structures. This study assumed that there is a 

plane in which the forces act, called the “plane of 

loads.” In addition, it was assumed that the plane of 

loads passed through a point (the shear center) in 

the cross section such that there is no twisting (tor-

sion) of the structure. This means that the resulting 

forces that act on any cross section of the structure 

consist of only bending moments, normal forces, 

and shear forces [2]. The cross section of the struc-

ture with respect to the y-z plane was assumed to be 

unchanging. Therefore, the compatibility effects are 

neglected. 

First, a 1-D structure cross section A is defined as 

a region bounded by a general closed major princi-

pal plane curve, and C is the centroid of cross sec-

tion, as shown in Fig. 1 [3]. Rectangular Cartesian 

coordinates and curvilinear coordinate s are used. s 

is the arc length measured along a cross section 

from one end of the structure to C. x, y, and z are 

rectangular Cartesian coordinates in the cross sec-

tion through C, with the origin at C. The axes are 

the directions of the normal vectors of the principal 

planes.    is a general regular skew curve called a 

“deflection curve.” The structure is generated by a 

cross section when C moves along   with the plane 

of the cross section normal to    as shown in Fig. 

1. When a model of the structure was defined in 

this manner, it has a uniform or nonuniform normal 

cross section and a regular curve of centroids  . 

Discontinuity between the cross sections can be 

neglected or smoothed by the appropriate method to 

obtain a regular curve.  

 

 
Fig. 1. Deflection curve of a 1-D structure.  

 

Let I be an interval and a continuous function α: I 

→    is an arc length parameterized curve de-

fined by a position vector α(s)=x(s)i+y(s)j+0k.  

Each component is differentiable and     . A 

curve is regular if the vector         ; that 

is,           [4]. At each point C on α there is an 

orthogonal triad associated with the coordinate axes. 

 

3. Kinematic Relation  

A rotation vector,    specifying the rotation of 

this triad as C moves along α was used to describe 

the configuration of α.    is then the rotation per 

unit length about the direction of the principal unit 

normal vector  .   is referred to as the curvature 

on the osculating plane on a normal plane of the 

model [3]. 

The function α is differentiable at a point s if both 

the right and left derivatives exist and are equal at 

that point. Hence, the following expression can be 

obtained:  

                      (1) 

The first derivative of the deflection curve is a 

tangent vector and is composed of a magnitude and 

direction vector given by Eq. (2) [5]. The direction 

vector is called the unit tangent vector T. 
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                      (2) 

Using the relations given in Eqs. (1) and (2), the 

unit tangent vector can be denoted as follows: This 

means that every point on the curve has only a sin-

gle unit tangent vector [6]. Thus, 

                 

                                             

The derivative of the unit tangent vector is also a 

vector with a magnitude and direction called a prin-

cipal unit normal vector N, as given by Eq. (3) [5]. 

A principal normal unit vector is perpendicular to a 

unit tangent vector.  

                    (3) 

Eq. (3) can be expressed simply as Eq. (4), in 

which κ(s) is called curvature. 

               (4) 

 

Fig. 2. Unit tangent vector of a deflection curve at a point.  

 

The unit tangent vector can be written in the 

form of an angle between the x-axis, as given in Eq. 

(5), from scalar multiplication with unit vectors, 

where i, and j are the unit vectors of the x and y-

axis, respectively, as shown in Fig. (2). The normal 

of the T is differentiable and is called the unit nor-

mal vector u by rotating the tangent vector through 

a right angle counterclockwise (Fig. (2)), and is 

given by Eqs. (6) and (7).  

                           (5) 

              
 

 
            

 

 
   (6) 

                  (7) 

The derivative of the unit tangent vector is ob-

tained from Eq. (5), and can be expressed as Eq. (8).  

                                    

                                         

                          
 

 
            

 

 
      

                 (8) 

The norm of the second derivative 

        measures the rate of change of the angle 

that the neighboring tangents make with the tangent 

at s. By substituting Eq. (8) into Eq. (4), the princi-

pal unit normal vector is non-differentiable and can 

be expressed simply as follows:  

                                        

                                (9) 

From Eqs. (4), (6), and (9), the curvature can be 

written in the form of Eq. (10) as an equation for 

the rate of change of the unit tangent with respect to 

the arc length [7] :   

                               (10) 

Here, for increasing and decreasing tangent values, 

the curvature will have a positive and negative sign, 

respectively. The osculating circle at α(s) is a circle 

with a radius r(s) = |1/ (s)| whose center lies along 

a line collinear with the principal unit normal vector 

at α(s), a distance r(s) from α(s)[7]. Normally, the 

unit normal vector shows the direction at a right 

angle to the unit tangent vector, but a principle unit 

normal vector shows the direction of the center of 

curvature as expressed in the following equation: 

                      (11) 

Hence, the vector starts from the curve to the 

corresponding center of the osculating circle Fig. 

(3). The R(s) vector can be given by Eq. (12) in 

terms of the principal unit normal vector given in 

Eq. (11): 

                  (12) 
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Fig. 3. Osculating circles of a point. 

From Eqs. (7), and (11), the left and right hand 

side values of the R(s) vector can be expressed in 

the following equation Fig. (3): 

                  (13) 

                  (14) 

The osculating circles have the same unit normal 

vector at a common point of the deflection curve, 

which means a line connecting the center of the 

adjacent osculating circles always passes through 

the common point, as shown in Fig. (3). Therefore, 

it is possible to calculate the center position of the 

adjacent osculating circle. This theory provides an 

opportunity to form the most complex deflection 

shapes numerically with little input, without of the 

need to solve the differential equations or polyno-

mials of a trigonometric series, as shown in Fig. (4).  

 

 

Fig. 4. Deflection curve modeling with five segments with 

different curvatures and lengths. 

 

4. Displacement Determinations  

Three main geometric assumptions are using to 

calculate the displacements of a deflection curve: 

linear, nonlinear and large deflections. Consider a 

sufficiently small segment between points 1 and 2 

on the deflection curve: the length between these 

points is ds, the radius of curvature on the segment 

is equal to r and the chord length between these 

points is dc. The tangent angles at points 1 and 2 

are θ1 and θ2, respectively. The central angle of the 

arc is the difference between the tangent angles dθ 

(Fig. (5)).  

In linear displacement calculations, the kinematic 

assumptions are [7]: 

       

                        .  

In nonlinear displacement calculations, the kine-

matic assumptions are [8]:  

                

                                  

In large deflection displacement calculations, the 

assumptions are [8]:  

                                  

 

Fig. 5. Displacement of an osculating circle. 

The conventional way to determine the displace-

ments is to substitute the assumptions into Eq. (10) 

and solve analytically or numerically the differen-

tial equation obtained. As shown in Fig. (5), the 

value of ξ is neglected and the slope angle of the 

chord is taken as the tangent angle of point A in the 

conventional methods. There is no problem if ξ is 
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relatively smaller. On the other hand, considering 

large deflections and large rotations, it can cause 

significant errors in analytical methods or increase 

the required element number and solution time in 

numerical methods. 

A progressive numerical method can be developed 

from the proposed theory. Suppose that the internal 

forces acting on an initial deflection curve are 

known, it is possible to divide the deflection curve 

into segments, and calculate the curvature values of 

each segment according to the corresponding inter-

nal loads. Each segment might have a different 

length and different curvature value. The inputs for 

the kinematic relation are the length of the seg-

ments and curvature values. A more geometric de-

scription is that the curve is composed of circle 

segments or arcs whose radii and lengths are known. 

The end point of an arc is common with the starting 

point of the adjacent arc.  

  

 

Fig. 6. Radius vectors of two adjacent osculating circles. 

 

The curvature      on ds1,2 length segment S1,2 be-

tween point 1 and 2 is assumed to be constant. 

Therefore, these points are on the same osculating 

circle. The osculating circle on S1,2 has two differ-

ent R vectors R1,O1 and R2,O1, at points 1 and 2, re-

spectively, with same magnitudes and different 

directions through the center of the osculating circle 

O1 Fig. (6). The displacement vector dc1,2 from 

point 1 to 2 can be defined from the vectorial sum-

mation of R vectors as follows by Eqs. (13) and (14) 

Fig. (6): 

           
      

                    (15) 

Consider point 3, which is a ds2,3 length away 

from point 2 Fig. (6). As can be seen, there are one 

unit tangent vector and two different R vectors on 

point 2: one is through the curvature center of the 

S1,2 segment and the other is through the curvature 

center of S2,3. The displacement vector between 

points 2 and 3 can be expressed by Eqs. (13) and 

(14) Fig (6) as follows:  

           
      

                     (16) 

 

Fig. 7. Displacement vectors of two adjacent segment. 

The total displacement between points 1 and 3 can 

be expressed by the vectorial summation of the two 

displacement vectors in Eqs. (15) and (16) as fol-

lows (Fig. (7)):  

                      

 

Therefore, the general displacement vector be-

tween the starting point and any point of the deflec-

tion curve can be obtained by a simple vectorial 

summation of all previous segments displacement 

vector: 

 

                                      

                                
 
     (17) 

Eq. (17) can be expressed in terms of the curva-

ture and length. The unit normal vector is expressed 

in terms of the tangent angles, as in Eq. (6). There-

fore, the tangent angle needs to be expressed by the 

curvature values. The curvature value is constant 

between points 1 and 2. By integrating Eq. (10), the 

tangent angle at point 2 can be defined as follows:  

   
 

 
        

 

 
                      

                

Using the same procedure the adjacent tangent an-

gle can be obtained as follows:  
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Therefore, general formulation of the tangent an-

gles at point m can be expressed as follows: 

                    
   
     (18)  

The unit normal at point m was obtained from Eqs. 

(6) and (18) as follows: 

                      

                         
   
       

                                   
   
      (19) 

Finally by substituting Eq. (19) into Eq. (17) the 

displacement vector can be expressed as follows: 

             

               
 

      
                   

 
     

   

                           
   
           

               
 

      
                   

   
     

   

                        
 
             (20) 

The origin point’s tangent angle is necessary to 

start and obtain this progressive solution. The 

points at the clamped ends or the point where the 

moment value is at a maximum has zeroed a tan-

gent angle. Therefore, these points are suitable 

places to begin the procedure. This method makes 

only a kinematic relation, the curvature values need 

to be obtained from the moment values of the struc-

ture using the equilibrium equations and material 

model of the structure. The length of the segments 

can be defined by the user tolerance, and curvature 

values can be determined from the equilibrium 

equations depending on the internal load and mate-

rial properties. 

 

5. Application  

A small application can be used to determine how 

simple the method is. Suppose an elastic tapered 

cantilever beam under uniform moment, M, and 

total length of the beam is L. Material of the beam 

is elastic and the flexural rigidity is EI where E is 

the elastic modulus and I is the moment of inertia. 

The width of the rectangular beam cross-section is 

B and height of the beam cross-section is H in the 

clamped edge and Hmin in the free end (Fig. (8)). 

The material of the beam is assumed to be elastic. 

The dimension and properties are L=800 mm, Elas-

ticity modulus = 200000 N/mm2, B = 10mm, Hmax 

= 12 mm and Hmin = 2 mm, and M is up to 266667 

Nmm.  Therefore, the relation of the curvature can 

be given by following  

 
Fig. 8. Cantilever elastic tapered beam. 

 

First, structure is divided into the total n equal 

length segments where ds is expressed as follows: 

                (21) 

To use Eq. (20), the curvature of the each segment 

needs to be defined. The segment was assumed to 

have a constant curvature that is equal to the mid-

point curvature of the segment. The curvature equa-

tion for the elastic rectangular beam cross-section is 

given as follows [7]: 

                 (22) 

The moment of inertia of the segments midpoint 

can be expressed as follows where hm,m+1 is the 

mean height of the beam segment Sm,m+1.  

              
      (23) 

 

Fig. 9. Tapered beam divided into 4 segment. 

The first point, origin is selected as the clamped 

edge of the structure where tangent angle is zero. 

Therefore, the θ1 angle in Eq. (20) is zero. The av-

erage height of the segments can be defined as fol-

lows (Fig. (9)) where Δh=Hmax-Hmin: 
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                       (24) 

Therefore, the vertical and horizontal displace-

ments can be expressed as follows by substituting 

Eqs. (24), (25), (22), and (21) into Eq. (20):  

             
                   

   
 
         

      
   

                   
   

     

     
   

                   
     

       (25) 

             
                   

   
 
     

      
   

                   
     

     

     
   

                   
   

       (26) 

The solution of Eqs. (25), and (26) converges easi-

ly within the user specified tolerance. The author 

found that reliable results can be obtained if the 

segment number is greater than 4L/(πrmin). Some 

results of the proposed method is given in Fig. (10). 

 

 
Fig. 10. Deflection shapes of the elastic tapered beam. 

 

Large deflection Finite Element Method (FEM) 

solutions were calculated using ANSYS software. 

The maximum deviation between the converged 

FEM and proposed method result for the vertical 

displacement of the free end was ≤ 0.02 %, and the 

results are listed in Table 1.  

 

 

 

Table 1. Comparison of the free end vertical displacements.  

  FEM Proposed 
rmin/L -yfree/L -yfree/L 

0.00625 0.33120 0.33117 
0.01250 0.31851 0.31847 
0.01875 0.30058 0.30058 
0.02500 0.30845 0.30842 
0.03750 0.27903 0.27898 
0.06250 0.20004 0.20000 
0.10000 0.13326 0.13324 
0.18750 0.07321 0.07320 

 

6. Conclusions  

The proposed method allows the most complex 

deflection shapes to be formed numerically with 

few inputs, without needing to solve differential 

equations or polynomials of trigonometric series. 

The initial imperfections can also be modeled using 

the same method for more successful calculations. 

The proposed solution was extremely fast and accu-

rate.  

When performing a displacement calculation, it is 

sufficient to obtain the moment curvature diagram 

only once. After calculating the moments, the cur-

vature value can be read from the diagram even if it 

is in a plastic or post-buckling state. The exception 

occurs only when local plate buckling is considered. 

Therefore, the process can iterate with the effective 

width value. This is an advantage for the effective 

width calculation: The strain and stress at any point 

on the structure can be determined if the curvature 

value is known. Therefore, the effective width cal-

culation can be obtained as a variable according to 

the deflections. This makes the solution fast be-

cause the equations are simple. The common as-

sumptions in deflection modeling are not used. 

Hence the solutions are more realistic. Second-

order theory can be used when the deflection of a 

structure under an external load is known. There-

fore, more realistic solutions can be obtained with 

more iterations. 
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