• 제목/요약/키워드: In-plane displacement

검색결과 727건 처리시간 0.037초

나노부품 초정밀가공기용 마이크로스테이지의 절삭력 예측모델 시뮬레이션 (The Simulation of Cutting force Estimate Model at Micro-Stage for Ultra Precision Cutting Machine of Nano Part)

  • 김재열;심재기;곽이구;안재신;한재호;노기웅
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.173-178
    • /
    • 2003
  • Recently, according to the development of mechatronics industry that was composed of NT, ST, IT, RT and etc, the 1 necessity of nano-parts was increased. Because of the necessity, this research was started for improving work precision of the parts as fixing UPCU( Ultra Precision Cutting Unit)on lathe. So, in this research we executed the modeling of UPCU (Ultra Precision Cutting Unit) by the application of PZT, the relationship between the displacement of tool in UPCU and the cutting force of it has been in take a triangular position in the case of plane cutting. The modeling of system that is containing the fine displacement was performed. Also, we found like to find the optimal cutting condition through the simulation of relationship between the displacement and the cutting force.

  • PDF

Dynamic Response of an Anti-plane Shear Crack in a Functionally Graded Piezoelectric Strip

  • Kwon, Soon-Man;Lee, Kang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.419-431
    • /
    • 2004
  • The dynamic response of a cracked functionally graded piezoelectric material (FGPM) under transient anti-plane shear mechanical and in-plane electrical loads is investigated in the present paper. It is assumed that the electroelastic material properties of the FGPM vary smoothly in the form of an exponential function along the thickness of the strip. The analysis is conducted on the basis of the unified (or natural) crack boundary condition which is related to the ellipsoidal crack parameters. By using the Laplace and Fourier transforms, the problem is reduced to the solutions of Fredholm integral equations of the second kind. Numerical results for the stress intensity factor and crack sliding displacement are presented to show the influences of the elliptic crack parameters, the electric field, FGPM gradation, crack length, and electromechanical coupling coefficient.

3급 부정교합 환자에서의 치료후 골격변화 양상에 관한 연구 (A study on the skeletal changes after treatment of Class III malocclusion patients)

  • 정동화;차경석
    • 대한치과교정학회지
    • /
    • 제26권3호
    • /
    • pp.267-279
    • /
    • 1996
  • 교정치료는 치료 후의 분석이 이루어져야 그 성공여부를 평가받을 수 있다. 왜냐하면 교정치료는 환자자신의 고유한 균형을 변화시켜 또 다른 균형을 설정해가는 과정이기 때문이다. 그러나 1급이나 2급 부정교합에 비해 3급 부정교합 환자에 대한 연구는 미비하였다. 이 연구는 일반적인 교정치료시와 보정기간 중에는 어떠한 변화과정을 겪으며, 이들 중 재발 양상을 나타내는 요소에 대하여 치료 전의 골격형태와 치료기간 중 변화량과의 상관관계를 알아보고자 시행하였다. 초진시의 Heilman dental age가 IIIB이상이며 1년 6개월이상의 보정기간이 경과한 24명 을 대상으로 하여 치료기간과 보정기간 중에 각항목의 변화량을 비교하고 이중 복귀현상을 나타낸 항목에 대한 상관관계를 분석하여 다음과 같은 결론을 얻었다. 1. FH plane에 대한 교합평면의 각과 하악평면의 각, 그리고 하악평연에 대한 하악 전치의 각은 치료기간중의 변화가 보정기간 중에 치료전의 상태로의 복귀현상을 나타내었으며 이중 교합평면각과 하악 전치의 치축항목은 치료기간중의 변화량과 역상관 관계를 나타내었다. 2. 치료 종료시 교합평면의 상방변위가 보정기간 중에 원래의 형태로 복귀하려는 경향을 보였으며 이는 치료기간 중에 변위량과 비례하여 나타났으나 기저골에 대한 상하악 대구치의 경사는 치료기간중의 변화량이 보정기간에 일정하게 유지되었다. 3. 보정기간 중의 하악평면각은 치료기간 중의 하악의 후하방 회전량이 클수록 감소하였다.

  • PDF

Comparison Kinematic Patterns between the Star Excursion Balance Test and Y-Balance Test in Elite Athletes

  • Ko, Jupil
    • 한국운동역학회지
    • /
    • 제27권3호
    • /
    • pp.165-169
    • /
    • 2017
  • Objective: The Star Excursion Balance Test (SEBT) and Y-Balance Test (YBT) have been commonly applied to measure dynamic postural stability ability. These two tests are utilized interchangeably in various settings. However, they could in fact require different movements to assess dynamic postural stability, as one uses a platform and different measuring techniques than the other. The purpose of this study was to determine if there was a significant difference in the kinematic patterns in physically active population while performing the SEBT and the YBT. Method: Seventy participants performed in the Anterior (AN), Posteromedial (PM), and Posterolateral (PL) directions of the SEBT and the YBT. The kinematics of hip, knee, and ankle in sagittal plane was calculated and analyzed. Paired-sample t-tests were performed to compare joint angular displacement in the ankle, knee, and hip between the SEBT and the YBT. Results: Significant differences in angular displacement at the hip, knee, and ankle joints in the sagittal plane between performance on the SEBT and on the YBT were observed. Conclusion: Clinicians and researchers should not apply these dynamic postural control tasks interchangeably from one task to another. There appear to be kinematic pattern differences between tests in healthy physical active population.

A simple method of stiffness matrix formulation based on single element test

  • Mau, S.T.
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.203-216
    • /
    • 1999
  • A previously proposed finite element formulation method is refined and modified to generate a new type of elements. The method is based on selecting a set of general solution modes for element formulation. The constant strain modes and higher order modes are selected and the formulation method is designed to ensure that the element will pass the basic single element test, which in turn ensures the passage of the basic patch test. If the element is to pass the higher order patch test also, the element stiffness matrix is in general asymmetric. The element stiffness matrix depends only on a nodal displacement matrix and a nodal force matrix. A symmetric stiffness matrix can be obtained by either modifying the nodal displacement matrix or the nodal force matrix. It is shown that both modifications lead to the same new element, which is demonstrated through numerical examples to be more robust than an assumed stress hybrid element in plane stress application. The method of formulation can also be used to arrive at the conforming displacement and hybrid stress formulations. The convergence of the latter two is explained from the point of view of the proposed method.

NUMERICAL ANALYSIS OF A LAMINATED COMPOSITE ELASTIC FIELD WITH ROLLER GUIDED PANEL

  • Go, Jae-Gwi;Ali, Mohamed Afsar
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제14권2호
    • /
    • pp.67-78
    • /
    • 2010
  • An elastic field composed of symmetric cross-ply laminated material is analyzed in roller guided panel. The plane stress elasticity problem is formulated in terms of two displacement parameters with mixed boundary conditions. The numerical solution for two displacement parameters is obtained using a finite element method considering a panel of glass/epoxy laminated composite. Some components of stress and displacement at different sections of panel are displayed. The results makes sure that the formulation developed in this study can be applied to analyze the characteristics of elastic field made of laminated composite under any boundary conditions.

조화력에 의한 원환의 강제진동 (Forced Vibration of a Circular Ring with Harmonic Force)

  • 홍진선
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.123-128
    • /
    • 2005
  • Forced vibration of a thin circular ring with a concentrated harmonic force is analyzed when the ring is free and has only the in-plane motion. Using the unit doublet function for external force, the governing equation is obtained and is solved by the use of Laplace transform. The exact solutions of displacement components and bending moment are obtained. In order to verify the solutions of analysis, finite element analysis is performed and the results shows good agreement. Then, frequency response curves for displacement and bending moment are obtained. In deriving the governing equations and the solutions, nondimensional parameter of the exciting frequency and the magnitude of exciting force are extracted. As the displacement components are obtained, the remaining bending strain, slope, curvature, shear force, etc. can also be derived. With the results of this work, the responses of a free ring excited on multiple points with different frequencies can also be obtained easily by superposition.

분포하중이 평면 원호 아치의 동적 응답에 미치는 영향 (Effects of Partially Distributed Step Load on Dynamic Response of the Plane Circular Arches)

  • 조진구;박근수
    • 한국농공학회지
    • /
    • 제43권4호
    • /
    • pp.89-96
    • /
    • 2001
  • In this study non-linear finite element analysis of dynamic response of steel arch under partially distributed dynamic load was discussed. Material and geometric non-linearities were included in finite element formulation and steel behavior was modeled with Von Mises yield criteria. Either radial or vertical dynamic load was dealt in numerical examples. Normal arch and arch with maximum shape imperfection of L/11,000 were studied. The analysis results showed that maximum displacement at the center of arch was occurred when 70% of arch span was loaded. The maximum displacement at a quarter of arch span was occurred when 50% of arch span was loaded and the displacement was larger than that of center of arch. Ratio of arch rise to arch span within 0.2∼-.3 seems to be appropriate for arch under radial or vertical load.

  • PDF

이방성 함유체가 포함된 무한고체의 효과적인 탄성해석을 위한 수치해석 방법 개발 (Development of a Numerical Method for Effective Elastic Analysis of Unbounded Solids with Anisotropic Inclusions)

  • 최성준;이정기
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.41-52
    • /
    • 1998
  • A volume integral equation method and a mixed volume and boundary integral equation method are presented for the solution of plane elastostatic problems in solids containing orthotropic inclusions and voids. The detailed analysis of the displacement and stress fields are developed for orthotropic cylindrical and elliptic-cylindrical inclusions and voids. The accuracy and effectiveness of the new methods are examined through comparison with results obtained from analytical and boundary integral equation methods. Through the analysis of plane elastostatic problems in unbounded isotropic matrix containing orthotropic inclusions and voids, it is established that these new methods are very accurate and effective for solving plane elastostatic and elastodynamic problems in unbounded solids containing general anisotropic inclusions and voids or cracks.

  • PDF

능동 화이버 복합재의 모델링 및 적용 연구 (Modeling and Application of Active Fiber Composites)

  • 하성규;이영우;김영호
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1261-1268
    • /
    • 2001
  • Effective material properties of active fiber composites with interdigitated electrodes are derived as a function of the fiber volume fraction. For the purpose of applying the rule of mixture, three unit cell models are introduced; each for the deformation and stress continuities in the out of plane and in-plane directions, and the continuity of the electrical displacement in the longitudinal direction. Derived effective material properties are compared with the results by the finite element method; good agreements are observed between them. As an application, the electromechanical behavior of the angle ply laminates with the active fiber layers bonded on the top and bottom surfaces are investigated; the angle of piezoelectric fiber to maximize the twisting curvature is obtained using the present model.