• 제목/요약/키워드: In-plane displacement

검색결과 728건 처리시간 0.034초

변위 측정을 기본으로 한 구멍뚫기방법에 의한 잔류응력 측정 방법 (Determination of Residual Stress by the Hole Drilling Method Based on Displacement Measurement)

  • 신동일;주진원
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1542-1550
    • /
    • 2005
  • This paper presents the numerical procedure for calculating non-uniform residual stresses based on relieved displacements obtained from incremental hole drilling. The relationship between the in-plane displacement produced by introducing a blind hole and the corresponding residual stress is established. Finite element calculations are described to evaluate the relieved coefficients required for the determination of non-uniform residual stresses. Validity of the proposed method has been tested through three axisymmetric test examples and two three-dimensional examples. As a result of . simulation on the test examples, it is found that this numerical procedure is well adopted to measuring non-uniform residual stress in the full hole depth range of the hole diameter from the surface. The accuracy of the hole drilling method with displacement measurement is discussed, comparing tile method with strain measurement

침엽수림 상부의 단일층 풍속 관측으로부터의 영면변위 추정에 관하여 (On Estimation of Zero Plane Displacement from Single-Level Wind Measurement above a Coniferous Forest)

  • 유재일;홍진규;권효정;임종환;김준
    • 한국농림기상학회지
    • /
    • 제12권1호
    • /
    • pp.45-62
    • /
    • 2010
  • 영면변위(d)는 거친 식생군락에 의해 운동량이 모두 흡수되어 군락 내의 대수적 풍속 프로파일이 0이 되는 높이를 말한다. 군락의 표면 거칠기의 구조를 나타내는 영면변위는 군락난류의 분석과 지표 스칼라 플럭스의 계산에 매우 중요하다. 본 단보에서는 Monin-Obukhov 상사이론에 기반을 두고 단일층에서 관측된 평균수평풍속 자료를 사용하는 두 가지 다른 방법을 사용하여 광릉침엽수림에서 d 값을 추정하였다. 관측지의 비균질성과 복잡성을 고려해서, 표면거칠기와 바람체계가 d에 미칠수 있는 영향을 살펴보기 위해, 자료를 매 $30^{\circ}$ 간격의 풍향별로 나누었다. 전반적으로 두 방법을 사용한 결과는 서로 비슷했는데, $d/h_c$ (여기서 $h_c$는 군락의 높이로서 약 ~23m)는 풍향에 따라 0.51~0.97의 범위를 보였다. 이러한 $d/h_c$의 값의 범위는 문헌에 보고되어 있는 범위(0.64~0.94)와 크게 다르지 않았으나, 다소 높은 쪽에 분포되어 있었다. 이러한 원인의 하나로는 관측이 두 방법의 전제인 Monin-Obukhov 상사이론이 성립하지 않는 거칠기아층에서 이루어졌기 때문인 것으로 사료된다. 따라서 관측높이가 거칠기 아층에 존재할 경우에는 단일층 풍속으로부터 영면변위를 추정하는 방법을 적용하고 그 결과를 해석하는 데에 세심한 주의가 필요하다.

Effects of the long-term use of maxillary protraction facemasks with skeletal anchorage on pharyngeal airway dimensions in growing patients with cleft lip and palate

  • Kim, Jung-Eun;Yim, Sunjin;Choi, Jin-Young;Kim, Sukwha;Kim, Su-Jung;Baek, Seung-Hak
    • 대한치과교정학회지
    • /
    • 제50권4호
    • /
    • pp.238-248
    • /
    • 2020
  • Objective: To investigate the effects of the long-term use of a maxillary protraction facemask with miniplate (FM-MP) on pharyngeal airway dimensions in growing patients with cleft lip and palate (CLP). Methods: The study included 24 boys with CLP (mean age, 12.2 years; mean duration of FM-MP therapy, 4.9 years), divided into two groups according to the amount of A point advancement to the vertical reference plane (VRP): Group 1, > 4 mm; Group 2, < 2 mm; n = 12/group. After evaluating the skeletodental and airway variables using lateral cephalograms acquired before and after FM-MP therapy, statistical analyses were performed. Results: Group 1 showed greater forward and downward displacements of the posterior maxilla (posterior nasal spine [PNS]-horizontal reference plane [HRP]; PNS-VRP), greater increase in ANB, more forward tongue position (tongue tip-Pt vertical line to Frankfort horizontal plane), and greater increase in the oropharynx (superior posterior airway space [SPAS]; middle airway space [MAS]) and upper nasopharynx (PNS-adenoid2) than did Group 2. While maxillary advancement (A-VRP and PNS-VRP) correlated with increases in SPAS, MAS, and PNS-adenoid2, downward displacement of the PNS (PNS-HRP) correlated with increases in SPAS, MAS, PNS-adenoid1, and PNS-adenoid2, and with a decrease in vertical airway length (VAL). Mandibular forward displacement and decrease in mandibular plane correlated with increases in MAS. Conclusions: FM-MP therapy had positive effects on the oropharyngeal and nasopharyngeal airway spaces without increases in VAL in Group 1 rather than in Group 2. However, further validation using an untreated control group is necessary.

Analysis of underground post-tensioned precast concrete box utility tunnel under normal fault displacement

  • Wu, Xiangguo;Nie, Chenhang;Qiu, Faqiang;Zhang, Xuesen;Hong, Li;Lee, Jong-Sub;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • 제29권2호
    • /
    • pp.69-79
    • /
    • 2022
  • For long underground box utility tunnels, post-tensioned precast concrete is often used. Between precast tunnel segments, sealed waterproof flexible joints are often specified. Fault displacement can lead to excessive deformation of the joints, which can lead to reduction in waterproofing due to diminished contact pressure between the sealant strip and the tunnel segment. This paper authenticates utilization of a finite element model for a prefabricated tunnel fault-crossing founded on ABAQUS software. In addition, material parameter selection, contact setting and boundary condition are reviewed. Analyzed under normal fault action are: the influence of fault displacement; buried depth; soil friction coefficient, and angle of crossing at the fault plane. In addition, distribution characteristics of the utility tunnel structure for vertical and longitudinal/horizontal relative displacement at segmented interface for the top and bottom slab are analyzed. It is found that the effect of increase in fault displacement on the splice joint deformation is significant, whereas the effects of changes in burial depth, pipe-soil friction coefficient and fault-crossing angle on the overall tunnel and joint deformations were not so significant.

Extension of a new tailoring optimisation technique to sandwich shells with laminated faces

  • Icardi, Ugo
    • Structural Engineering and Mechanics
    • /
    • 제43권6호
    • /
    • pp.739-759
    • /
    • 2012
  • The tailoring optimization technique recently developed by the author for improving structural response and energy absorption of composites is extended to sandwich shells using a previously developed zig-zag shell model with hierarchic representation of displacements. The in-plane variation of the stiffness properties of plies and the through-the thickness variation of the core properties are determined solving the Euler-Lagrange equations of an extremal problem in which the strain energy due to out-of-plane strains and stresses is minimised, while that due to their in-plane counterparts is maximised. In this way, the energy stored by unwanted out-of-plane modes involving weak properties is transferred to acceptable in-plane modes. As shown by the numerical applications, the critical interlaminar stress concentrations at the interfaces with the core are consistently reduced without any bending stiffness loss and the strength to debonding of faces from the core is improved. The structural model was recently developed by the author to accurately describe strain energy and interlaminar stresses from the constitutive equations. It a priori fulfills the displacement and stress contact conditions at the interfaces, considers a second order expansion of Lame's coefficients and a hierarchic representation that adapts to the variation of solutions. Its functional d.o.f. are the traditional mid-plane displacements and the shear rotations, so refinement implies no increase of the number of functional d.o.f. Sandwich shells are represented as multilayered shells made of layers with different thickness and material properties, the core being treated as a thick intermediate layer.

힘-변위 관계를 이용한 확장된 티모센코 보에 대한 스펙트럴 요소 모델링 (Spectral Element Modeling of an Extended Timoshenko Beam Based on the Force-Displacement Relations)

  • 이창호;이우식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.45-48
    • /
    • 2008
  • Periodic lattice structures such as the large space lattice structures and carbon nanotubes may take the extension-transverse shear-bending coupled vibrations, which can be well represented by the extended Timoshenko beam theory. In this paper, the spectrally formulated finite element model (simply, spectral element model) has been developed for extended Timoshenko beams and applied to some typical periodic lattice structures such as the armchair carbon nanotube, the periodic plane truss, and the periodic space lattice beam.

  • PDF

Analytical modeling of thin-walled box T-joints

  • Marur, Prabhakar R.
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.447-457
    • /
    • 2009
  • A general analytical method for computing the joint stiffness from the sectional properties of the members that form the joint is derived using Vlasov's thin-walled beam theory. The analytical model of box T-joint under out-of-plane loading is investigated and validated using shell finite element results and experimental data. The analytical model of the T-joint is implemented in a beam finite element model using a revolute joint element. The out-of-plane displacement computed using the beam-joint model is compared with the corresponding shell element model. The results show close correlation between the beam revolute joint model and shell element model.

유한요소법에 의한 하악제 1 대구치의 Cervical Traction의 효과에 관한 역학적 연구 (A FINITE ELEMENT ANALYSIS OF THE DISPLACEMENT AND STRESS DISTRIBUTION OF HUMAN DRY MANDIBLE DURING THE MANDIBULAR FIRST MOLAR CERVICAL TRACTION)

  • 안의영;정규림
    • 대한치과교정학회지
    • /
    • 제19권1호
    • /
    • pp.45-59
    • /
    • 1989
  • This study was undertaken to analyze the displacement and stress distribution in the mandible according to the pulling directions during mandibular first molar cervical traction after mandibular second molar extraction. The 3-dimensional finite element method(FEM) was used for a mathematical model composed of 594 elements and 1019 nodes. An orthodontic force, 450 gm, was applied to the each mandibular first molar in parallel, and below the occlusal plane by $7^{\circ}\;and\;25^{\circ}$ and meet the midsagittal plane by $40^{\circ}$ toward posterior direction. The results were as follows: 1. Mandibular teeth were displaced in more downward, posterior and lateral direction. Especially high stress was noted in case of parallel pull than in case of below the occlusal plane by $7^{\circ}\;and\;25^{\circ}$. 2. Mandibular first molar was moved bodily. 3. Generally, alveolar bone, mandibular body, ascending ramus and mandibular angle portion were displaced in downward, posterior and lateral direction. But coronoid process was displaced in downward, forward and lateral direction, and anterior and inner middle portion of condyle head and neck were displaced in downward, forward and medial direction, and posterior and outer middle portion of condyle head and neck were displaced in upward, forward and medial direction. 4. Maximum stress was observed at the condyle head and neck portion. With steeper direction of force, condyle head and neck showed more stress than parallel relation to the occlusal plane.

  • PDF

충돌 증후군에서 견봉 형태 및 상완골 두 상방 전위의 자기공명영상 분석 (Magnetic Resonance Imaging Assessment of Acromion Morphology and Superior Displacement of the Humeral Head in the Impingement Syndrome)

  • 구본섭;김경철;오정희
    • Clinics in Shoulder and Elbow
    • /
    • 제2권1호
    • /
    • pp.28-34
    • /
    • 1999
  • Purpose: We studied magnetic resonance imaging of acromion morphology and superior displacement of the humeral head in the patients with diagnosis of rotator cuff impingement syndrome, and also documented the relationship of type Ⅲ acromion to the rotator cuff tear. Materials and Methods: We reviewed retrospectively 40 patients(40 shoulders) who had arthroscopic treatment for the diagnosis of stage II impingement or rotator cuff partial tear and did not have other risk lesions except acromion factor. The mean age was 48.7 years at operation. 21 men(2l shoulders), mean age of 26 years, were used as controls. Acromial type, tilt, and superior displacement of humeral head in sagittal plane, and acromial lateral angulation in coronal plane were measured. Four parameters of the patients were compared with those of control group. And then, the data were subdivided and analyzed with respect to acromial type and patient age in the impingement group. Student t test and multi-way ANOVA were used. Results: In impingement group, Farley's type I acromion, 33%, type Ⅱ, 38%, type Ⅲ, 27% and type Ⅳ, 2%. Superior displacement of humeral head( 4.8mm) were characteristic in the impingement group compared with the control group(1.3mm)(p<0.05). But acromial tilt and lateral angulation were not statistically different. In the analysis of the impingement group, the change of 4 parameters was not significant with respect to age(p>0.05), but lateral angulation in type I acromion(18 degree) and superior displacement of humeral head in type Ⅲ acromion(6.3mm) were significantly increased(p<0.05). All 4 parameters were not different between two subdivided types of type Ⅲ acromion. Conclusion: All types of acromian and large lateral angulatian cauld develop impingement syndrame, but acromial tilt was nat risk factar. Appearance of type Ⅲ acromian and increased superiar displacement of humeral head were characteristic findings in the impingement syndrame. Superiar displacement of humeral head as a result of degenerative change of rotatar cuff was probably primary cause far impingement. The type Ⅲ acromian might be an acquired farm, which cauld be expected to accelerate the tear of rotatar cuff as a cansequence.

  • PDF

Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory

  • El-Hassar, Sidi Mohamed;Benyoucef, Samir;Heireche, Houari;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • 제10권3호
    • /
    • pp.357-386
    • /
    • 2016
  • In this research work, an exact analytical solution for thermal stability of solar functionally graded rectangular plates subjected to uniform, linear and non-linear temperature rises across the thickness direction is developed. It is assumed that the plate rests on two-parameter elastic foundation and its material properties vary through the thickness of the plate as a power function. The neutral surface position for such plate is determined, and the efficient hyperbolic plate theory based on exact neutral surface position is employed to derive the governing stability equations. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the quadratic distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Just four unknown displacement functions are used in the present theory against five unknown displacement functions used in the corresponding ones. The non-linear strain-displacement relations are also taken into consideration. The influences of many plate parameters on buckling temperature difference will be investigated. Numerical results are presented for the present theory, demonstrating its importance and accuracy in comparison to other theories.