• Title/Summary/Keyword: In-plane compression

Search Result 329, Processing Time 0.026 seconds

Compression failure and fiber-kinking modeling of laminated composites

  • Ataabadi, A. Kabiri;Ziaei-Rad, S.;Hosseini-Toudeshky, H.
    • Steel and Composite Structures
    • /
    • v.12 no.1
    • /
    • pp.53-72
    • /
    • 2012
  • In this study, the physically-based failure models for matrix and fibers in compression and tension loading are introduced. For the 3D stress based fiber kinking model a modification is proposed for calculation of the fiber misalignment angle. All of these models are implemented into the finite element code by using the advantage of damage variable and the numerical results are discussed. To investigate the matrix failure model, purely in-plane transverse compression experiments are carried out on the specimens made by Glass/Epoxy to obtain the fracture surface angle and then a comparison is made with the calculated numerical results. Furthermore, shear failure of $({\pm}45)_s$ model is investigated and the obtained numerical results are discussed and compared with available experimental results. Some experiments are also carried out on the woven laminated composites to investigate the fracture pattern in the matrix failure mode and shown that the presented matrix failure model can be used for the woven composites. Finally, the obtained numerical results for stress based fiber kinking model and improved ones (strain based model) are discussed and compared with each other and with the available results. The results show that these models can predict the kink band angle approximately.

Modeling of unreinforced brick walls under in-plane shear & compression loading

  • Kalali, Arsalan;Kabir, Mohammad Zaman
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.247-278
    • /
    • 2010
  • The study of the seismic vulnerability of masonry buildings requires structural properties of walls such as stiffness, ultimate load capacity, etc. In this article, a method is suggested for modeling the masonry walls under in-plane loading. At the outset, a set of analytical equations was established for determining the elastic properties of an equivalent homogeneous material of masonry. The results for homogenized unreinforced brick walls through detailed modeling were compared in different manners such as solid and perforated walls, in-plane and out-of-plane loading, etc, and it was found that this method provides suitable accuracy in estimation of the wall linear properties. Furthermore, comparison of the results of proposed modeling with experimental out coming indicated that this model considers the non linear properties of the wall such as failure pattern, performance curve and ultimate strength, and would be appropriate to establish a parametric study on those prone factors. The proposed model is complicated; therefore, efforts need to be made in order to overcome the convergency problems which will be included in this study. The nonlinear model is basically semi-macro but through a series of actions, it can be simplified to a macro model.

A Study on the Reinforced Method of Doubler Plate in Ship Hull Structure (선박 이중판의 보강법 연구)

  • HAM JUH-HYEOK
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.39-47
    • /
    • 2003
  • A study of the structural strength evaluation on the doubler plate, considering various load cases that were subjected to in-plane and out of plane combined load, has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate for various load cases, elasto-plastic large deflection analysis is introduced, including the contact effect between main plate and doubler. The characteristics of stiffness and strength variation are discussed, based on the results. In order to compare the doubler structure with the original strength of main plate, without doubler, simple formulas for the evaluation of the equivalent flat plate thickness are derived for each load case, respectively, based on the additional series of analysis of flat plate structure. Using these derived equations, the thickness change of an equivalent flat plate is analyzed according to the variation of various design parameters of doubler platesome design guides are suggested in order to maintain the original strength of main plate without doubler reinforcement. Finally, correlation between derived equivalent flat plate formula and the developed buckling strength formulas are discovered, and these relations are formulated for the future development of simple strength evaluation formula of general doubler plate structure.

A High Efficiency Data Compression Scheme Based on Deletion of Bit-plain in Wireless Multimedia Sensor Networks (무선 멀티미디어 센서 네트워크에서 비트-평면 삭제를 통한 고효율 데이터 압축 기법)

  • Park, Junho;Ryu, Eunkyung;Son, Ingook;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.37-45
    • /
    • 2013
  • In recent years, the demands of multimedia data in wireless sensor networks have been significantly increased for the high-quality environment monitoring applications that utilize sensor nodes. However, since the amount of multimedia data is very large, the network lifetime is significantly reduced due to excessive energy consumption on particular nodes. To overcome this problem, in this paper, we propose a high efficiency data compression scheme in wireless multimedia sensor networks. The proposed scheme reduces the packet size by a multiple compression technique that consists of primary compression that deletes the lower priority bits considering characteristics of multimedia data and secondary compression based on Chinese Remainder Theorem. To show the superiority of our scheme, we compare it with the existing compression scheme. Our experimental results show that our proposed scheme reduces the amount of transmitted data by about 55% and increases network lifetime by about 16% over the existing scheme on average.

Numerical simulation of an adobe wall under in-plane loading

  • Nicola, Tarque;Guido, Camata;Humberto, Varum;Enrico, Spacone;Marcial, Blondet
    • Earthquakes and Structures
    • /
    • v.6 no.6
    • /
    • pp.627-646
    • /
    • 2014
  • Adobe is one of the oldest construction materials that is still used in many seismic countries, and different construction techniques are found around the world. The adobe material is characterized as a brittle material; it has acceptable compression strength but it has poor performance under tensile and shear loading conditions. Numerical modelling is an alternative approach for studying the nonlinear behaviour of masonry structures such as adobe. The lack of a comprehensive experimental database on the adobe material properties motivated the study developed here. A set of a reference material parameters for the adobe were obtained from a calibration of numerical models based on a quasi-static cyclic in-plane test on full-scale adobe wall representative of the typical Peruvian adobe constructions. The numerical modelling, within the micro and macro modelling approach, lead to a good prediction of the in-plane seismic capacity and of the damage evolution in the adobe wall considered.

SHAPING A NOZZLE WITH A CENTRAL BODY (스파이크 노즐 설계)

  • KIM C. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.293-298
    • /
    • 2005
  • We calculate the coordinates of an axisymmetric nozzle with a central body. This nozzle ensures a transonic flow with a plane sound surface, which is orthogonal to the symmetry axis and has a wall kink at the sonic point, The Chaplygin transformation in the subsonic part of the flow leads the Dirichlet problem for a system of nonlinear equations. The definition domain of the solution in the velocity-hodograph plane is taken as a rectangle. This enables one to obtain the nozzle with a monotonic distribution of velocity along its subsonic part. In the nonlinear differential equation, the linear Chaplygin operator for plane flows is separated, which allows the iterative calculation of the solution. The supersonic part of the nozzle is calculated under the assumption that the flow at the nozzle exit is uniform and parallel to the symmetry axis; i.e., the supersonic jet outflows to the submerged space with the same pressure. The calculation is performed by the characteristic method. The exact solution of Tricomi equation for near-sonic flows with the straight sonic line is used to 'move away' the sound plane. The velocity distribution alone the supersonic part of the nozzle is also monotonic, which ensures the absence of the boundary-layer separation and, therefore, the adequacy of the ideal-gas model. calculations show that the flow in the supersonic part of the nozzle is continuous (compression shocks are absent)

  • PDF

Image Coding Using Bit-Planes of Wavelet Coefficients (웨이블렛 변환 계수의 비트 플레인을 이용한 영상부호화)

  • 김영로;홍원기;고성제
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.714-725
    • /
    • 1997
  • This paper proposes an image compression method using the wavelet transform and bit-plane coding of wavelet coefficients. The hierarchical application of wavelet transform to an image produces one low resoluation(the subband with lowest frequency) image and several high frequency subbands. In the proposed method, the low resolution image is compressed by a lossless method at 8 bits per each coefficient. However, the high frequency subbands are decomposed into 8 bit planes. With an adptive block coding method, the decomposed bit planes are effectively compressed using localized edge information in each bit plane. In addition, the propsoed method can control bit rates by selectively eliminating lessimportant subbands of low significant bit planes. Experimental results show that the proposed scheme has better performance in the peak signal to noise ratio (PSNR) and compression rate than conventional image coding methods using the wavelet transform and vector quantization.

  • PDF

A VLSI Design of Discrete Wavelet Transform and Scalar Quantization for JPEG2000 CODEC (JPEG2000 CODEC을 위한 DWT및 양자화기 VLSI 설계)

  • 이경민;김영민
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.1
    • /
    • pp.45-51
    • /
    • 2003
  • JPEG200, a new international standard for still image compression based on wavelet and bit-plane coding techniques, is developed. In this paper, we design the DWT(Discrete Wavelet Transform) and quantizer for JPEG2000 CODEC. DWT handles both lossy and lossless compression using the same transform-based framework: The Daubechies 9/7 and 5/3 transforms, and quantizer is implemented as SQ(Scalar Quantization). The architecture of the proposed DWT and SQ are synthesized and verified using Xilinx FPGA technology. It operates up to 30MHz, and executes algorithms of wavelet transform and quantization for VGA 10 frame per second.

Region-based Spectral Correlation Estimator for Color Image Coding (컬러 영상 부호화를 위한 영역 기반 스펙트럴 상관 추정기)

  • Kwak, Noyoon
    • Journal of Digital Contents Society
    • /
    • v.17 no.6
    • /
    • pp.593-601
    • /
    • 2016
  • This paper is related to the Region-based Spectral Correlation Estimation(RSCE) coding method that makes it possible to achieve the high-compression ratio by estimating color component images from luminance image. The proposed method is composed of three steps. First, Y/C bit-plane summation image is defined using normalized chrominance summation image and luminance image, and then the Y/C bit-plane summation image is segmented for extracting the shape information of the regions. Secondly, the scale factor and the offset factor minimizing the approximation square errors between luminance image and R, B images by the each region are calculated. Finally, the scale factor and the offset factor for the each region are encoded into bit stream. Referring to the results of computer simulation, the proposed method provides more than two or three times higher compression ratio than JPEG/Baseline or JPEG2000/EBCOT algorithm in terms of bpp needed for encoding two color component images with the same PSNR.

Application of Modelling Stress-Strain Relations (Part I) -Application to Plane Strain Compression Tests- (응력-변형률 관계 정식화의 적용성(I) -평면변형률압축시험에 대한 적용성-)

  • Park, Choon-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.17-25
    • /
    • 2012
  • FEM requires the stress-strain relationship equations for numerical analyses. However, most formulations for the stress-strain relationship published up to the present are not satisfactory enough to properly express all the levels from the small strain to the peak. Tatsuoka and Shibuya (1991) suggested a new single formulation applicable not only to a wide range of geo-materials from soft clay to soft rock, but also to a wide range of strain levels from $10^{-6}$ to $10^{-2}$. The plain strain compression test is carried out to seven samples of research standard sand specimens and two samples of glass beads, which have been used at world-renowned research institutes. In this study, strains of the maximum principal stress (${\sigma}_1$) and the minimum principal stress (${\sigma}_3$) were thoroughly measured from $10^{-6}$ to $10^{-2}$, and the result, applied to Tatsuoka and Shibuya's new formulation, coincided closely with the measured data of the stress-strain relationship from the small strain to the peak.