• Title/Summary/Keyword: In-plane Strain

Search Result 939, Processing Time 0.026 seconds

Earth Pressure Equation Acting on the Cylindrical Diaphragm Wall in a Shaft (원형수직구에 설치된 강성벽체에 작용하는 토압산정방법)

  • Kong, Jin-Young;Shin, Young-Wan;Hwang, Yi-Sung;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.21-29
    • /
    • 2009
  • On plane strain condition, many researchers have investigated the earth pressure according to the shape of wall, and standardized method has been applied to the design of the retaining wall. But on cylindrical diaphragm wall, at-rest earth pressure has been generally used. Even though this method is on conservative side, it may lead to over-design. In this paper, the application of convergence confinement method to the calculation of the earth pressure acting on the cylindrical diaphragm wall of a shaft was suggested. In addition, a model test was carried out to investigate the distributions of earth pressure. Model test results show that the earth pressures of diaphragm wall are about 1.4 times larger than active earth pressure and about 0.8 times less than at-rest earth pressure.

A Study on Change of Safety Factor according to Slope Analysis Method using Strength Parameters and Slope Change (강도 정수와 경사도 변화를 활용한 비탈면 해석기법에 따른 안전율 변화에 관한 연구)

  • Moon, Hyojong;Shim, Jeonghoon;Jeong, Jisu;Lee, Seungho
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • The slope stability analysis by the limit equilibrium method has the disadvantage that it can be applied only when the analysis is performed by setting the critical plane after analyzing the active surface many times and the soil is uniform and only the safety factor can be calculated. However, the analysis using the strength reduction analysis method has advantages that the engineer can judge various aspects and calculate the safety factor. In this study, the safety factor according to the change of slope and shear strength was compared and analyzed using limit equilibrium analysis and strength reduction method. It is suggested that it is desirable to use the strength reduction method which can synthetically review the stress, displacement, and strain in the soil.

Investigation of ground behaviour between plane-strain grouped pile and 2-arch tunnel station excavation (2-arch 터널 정거장 굴착 시 평면변형률 조건에서 군말뚝의 이격거리에 따른 지반거동 분석)

  • Kong, Suk-Min;Oh, Dong-Wook;Ahn, Ho-Yeon;Lee, Hyun-Gu;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.535-544
    • /
    • 2016
  • Special tunnel design and construction methods have been suggested due to developments of subway and tunnel. Collapse accidents of tunnel bring enormous damage. So, observation and analysis for the safety of tunnelling and behaviour of surrounding ground are important. But, it is not economical to implement the field test in every time. Therefore, this study has measured ground behaviour due to excavation of 2-arch tunnel station according to offset between grouped pile and tunnel by laboratory model test. For the model test, trapdoor device was adopted. Tunnelling is simulated by volume loss of 2-arch tunnel. Ground displacements are observed by close range photogrammetric method and image processing. In addition, these data are compared with numerical analysis.

Mechanical Properties Prediction by Geometric Modeling of Plain Weave Composites (평직 복합재료의 기하학적 모델링을 통한 기계적 물성 예측)

  • Kim, Myung-jun;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.941-948
    • /
    • 2016
  • Textile composite materials have been widely applied in aerospace structures due to their various advantages such as high specific stiffnesses and strengths, better out-of-plane performances, impact and delamination resistances, and net shape fabrications. In this paper, a modified geometric model of repeating unit cell (RUC) is suggested based on the Naik's model for 2D plain weave textile composites. The RUC geometry is defined by various parameters. The proposed model considers another parameter which is a gap length between adjacent yarns. The effective stiffnesses are predicted by using the yarn slicing technique and stress averaging technique based on iso-strain assumption. And the stiffnesses of RUC are evaluated by adjusting the gap ratio and verified by comparing with Naik's model and experimental data for 2D plain weave composite specimens.

A Development of Explicit Algorithm for Stress-Erection Analysis of STRARCH System (스트라치 시스템의 긴장응력해석을 위한 명시적 해석법의 개발)

  • Lee, Kyoung-Soo;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.513-520
    • /
    • 2011
  • In this paper, the advanced explicit algorithm is proposed to simulate the stress-erection process analysis of Strarch system. The Strarch(Stressed-Arch) system is a unique and innovative structural system and member prestress comprising prefabricated plane truss frames which are erected by a post-tensioning stress-erection procedure. The flexible bottom chord which have sleeve and gap detail are closed by the reaction force of prestressing tendon. The prestress imposing to the tendon will make the Strarch system to be erected. This post tensioning process is called as "stress-erection process". During the stress-erection process, the plastic rigid body rotation is occurred to the flexible top chord by the excessive amount of plastic strain, and the structural characteristic becomes to be unstable. In this study, the large deformational beam-column element with plastic hinge is used to model the flexible top chord, and the advanced Dynamic Relaxation method(DRM) are applied to the unstable problem of stress-erection process of Strarch system. Finally, the verification of proposed explicit algorithm is evaluated by analysing the stress-erection of real project of Strarch system.

Analysis on the Behaviour of Foundation Using the Non-Linear Constitutive Laws (비선형구성식을 이용한 기초지반의 거동해석)

  • Jeong, Jin Seob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.253-265
    • /
    • 1993
  • This paper presents a numerical method for implementing a nonlinear constitutive material model developed by Lade, into a finite element computer program. The techniques used are based on the displacement method for the solution of axial symmetric and plane strain nonlinear boundary value problems. Laboratory behaviour of Baekma river sand(#40-60) is used to illustrate the determination of the parameters and verification of the model. Computer procedure is developed to determine the material parameters for the nonlinear model from the raw laboratory test data. The model is verified by comparing its predictions with observed data used for the determination of the parameters and then with observed data not used for the determination. Three categories of tests are carried out in the back-prediction exercise; (1) A hydrostatic test including loading and unloading response, (2) Conventional triaxial drained compression tests at three different confining pressure and (3) A model strip footing test not including in the evaluation of material parameters. Pertinent observations are discussed based on the comparison of predicted response and experimental data.

  • PDF

Effects of Geosynthetic Reinforcement on Compaction of High Water Content Clay (토목섬유 보강이 고함수비 점성토의 다짐에 미치는 영향)

  • Roh Han Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.67-84
    • /
    • 2005
  • This research was conducted to evaluate the effectiveness of reinforcement for nearly saturated soft clay compaction. The effectiveness was investigated by roller compaction test using nearly saturated clay specimens. The nearly saturated condition was obtained by submerging clay in the water for 12 hours. High water content specimens were compacted in plane strain condition by a steel roller. A specimen was compacted by four 5 cm horizontal layers. Specimens were prepared fur both reinforced and unreinforced cases to evaluate the effectiveness of reinforcement. Used reinforcement is a composite consisted of both woven and non-woven geotextile. The composite usually provides drainage and tensile reinforcement to hi인 water-contented clay so that it increases bearing capacity. Therefore, large compaction load can be applied to reinforced clay and it achieves higher density effectively. The reinforcement also increases compaction efficiency because it reduces the ratio between shear and vertical forces during compaction process. The maximum vertical stress on the base of specimen usually decreased with higher compaction thickness. The reinforcement increases soil stiffness under the compaction roller and it initiates stress concentration. As a result, it maintains higher vertical stress level on the base of specimen that provides better compaction characteristics. Based on test results, it can be concluded that the reinforcement is essential to achieve effective compaction on soft clay.

Numerical Analysis on the Stress and Deformation Behavior Characteristics of Flexible Joint for a Gas Pipe (가스배관용 플렉시블 조인트의 응력 및 변형거동특성에 관한 수치적 연구)

  • Kim, Chung-Kyun;Kim, Kyung-Seob
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.39-43
    • /
    • 2011
  • In this study, the stress and deformation behavior characteristics of a flexible joint for a gas pipe have been analyzed by a finite element method. These characteristic results may investigate the strength safety analysis of a flexible joint, which is composed by a spiral corrugation pipe or a rectangular corrugation model and a plane pipe. The FEM computed results show that an optimized spiral corrugation pipe model is a inclined angle of $4.7^{\circ}$ and a corrugation height of 1.5mm. And also, a rectangular corrugation pipe model of $90^{\circ}$ is recommended in strength safety rather than a spiral corrugation pipe with an inclined angle. Thus, a corrugated pipe for an increased strength safety is to recommend a reduced pitch and curvature radius of an inclined corrugation.

Propagation Behavior of Inclined Surface Crack of Semi-Infinite Elastic Body under Hertzian Contact (반무한 탄성체의 헤르츠 접촉하의 경사진 표면균열의 전파거동)

  • 김재호;김석삼;박중한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.624-635
    • /
    • 1990
  • Analytical study based on linear fracture mechanics was conducted on propagation behavior of inclined surface crack in semi-infinite elastic body. The analytical model was assumed to be inclined surface crack under plane strain condition upon which Hertzian stress was superimposed. Supposing continuous distribution of dislocation and applying Erdogan-Gupta's method to this crack problem, the stress intensity factors $K_{I}$ and $K_{II}$) at the crack-tip were obtained for various Hertzian contact positions. Analytic results have shown that driving force for crack growth is $K_{I}$ for non-lubricated condition and $K_{II}$ for fluid and boundary lubricated condition. The coefficient of friction at the hertzian contact and crack surfaces plays an important role in predicting the direction of crack propagation. It is also found that the maximum effective stress intensity factor exists at cracks of a certain specific length depending on lubricated condition.ion.n.

Effect of Cyclic Freezing-Thawing on Compressive Strength of Decomposed Granite Soils (동결-융해 반복작용으로 인한 화강풍화토의 압축강도 특성 변화에 관한 연구)

  • Yoo, Chung-Sik;Shin, Boo-Nam
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.1
    • /
    • pp.19-28
    • /
    • 2011
  • This paper presents the results of an investigation into the effect of cyclic freezing-thawing on the compressive strength characteristics of decomposed granite soils. A plane strain compression (PSC) tests were performed on a series of test specimens with different freezing-thawing cycles and fine contents to investigate the change in compressive strength under the process of freezing-thawing cycles. Also performed were scanning electron microscope (SEM) tests to investigate the change in structural rearrangement from a micro-scale point of view. The test results showed that the soil particles tend to conglomerate when subject to cycles of freezing and thawing, and that the soil with less fines exhibited decreased shear strength due to the cyclic freezing-thawing while the soils with a larger fine content showed the opposite trend.