• 제목/요약/키워드: In-plane Motion

검색결과 753건 처리시간 0.029초

회전축 정렬불량을 가지는 유연회전디스크의 유한요소법을 이용한 시간응답해석 (Finite Element Analysis for Time Response of a Flexible Spinning Disk with Translating Misalignment)

  • 허진욱;정진태
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1905-1913
    • /
    • 2002
  • Using the finite element method, this study investigates the dynamic time responses of a flexible spinning disk of which axis of rotation is misaligned with the axis of symmetry. The misalignment between the axes of symmetry and rotation is one of the major vibration sources in optical disk drives such as CD-ROM, CD-R, CD-RW and DVD drives. Based upon the Kirchhoff plate theory and the von-Karman strain theory, three coupled equations of motion for the misaligned disk are obtained: two of the equations are for the in-plane motion while the other is for the out-of-plane motion. After transforming these equations into two weak forms for the in-plane and out-of-plane motions, the weak forms are discretized by using newly defined annular sector finite elements. Applying the generalized-$\alpha$ time integration method to the discretized equations, the time responses and the displacement distributions are computed and then the effects of the misalign ment on the responses and the distributions are analyzed. The computation results show that the misalignment has an influence on the magnitudes of the in-plane displacements and it results in the amplitude modulation or the beat phenomenon in the time responses of the out-of-plane displacement.

축방향으로 이송되는 박막의 면외방향 진동 (Out-of-plane Vibration for an Axially Moving Membrane)

  • 신창호;정진태
    • 한국소음진동공학회논문집
    • /
    • 제16권2호
    • /
    • pp.198-206
    • /
    • 2006
  • The dynamic responses of both the in-plane and out-of-plane vibrations are investigated for an axially moving membrane. The equations of motion are derived for the moving membrane with no-slip boundary conditions by using the extended Hamilton principle. Based on the Galerkin method, the discretized equations of motion are derived. The generalized-time integration method is applied to compute the dynamic responses for the in-plane and out-of-plane motions. From the computed results, the responses are compared between the in-plane and out-of-plane vibrations. Furthermore. the effects of velocity and acceleration on the dynamic behaviours for displacements and stresses are presented.

골프 클럽의 스윙궤도와 스윙면에 대한 고찰 (A Study on the Swing Path and Plane of the Club in Golf Swing)

  • 성낙준
    • 한국운동역학회지
    • /
    • 제14권1호
    • /
    • pp.99-115
    • /
    • 2004
  • In order to Know the correct swing methods in golf swing it is important to understand the whole swing path but also the concept of swing plane. But, most amateur golfers don't Know the concept of swing plane well. Therefore this study was trying to make a good material that makes the concept of swing plane easy to understand. A good swing motion data was obtained from a professional golfer using the three-dimensional DLT method. This swing motion was divided into 10 phases and evaluated using the concept of swing plane. The result of the analyze show a good matches between the path of the club and swing plane. This result was summarized as a 3 dimensional graphics to provide a good material to teach the golf swing well.

Accuracy and Reliability of The Spine-Pelvis Monitor to Record Three-Dimensional Characteristics of The Spine-Pelvic Motion

  • Kim, Jung-Yong;Yoon, Kyung-Chae;Min, Seung-Nam;Yoon, Sang-Young
    • 대한인간공학회지
    • /
    • 제31권2호
    • /
    • pp.345-352
    • /
    • 2012
  • Objective: The aim of this study is to evaluate the accuracy and reliability of Spine-Pelvis Monitor(SPM) that was developed to measure 3-dimensional motion of spine and pelvis using tilt sensor and gyro sensor. Background: The main cause of low back pain is very much associated with the task using the low back and pelvis, but no measurement technique can quantify the both spine and pelvis. Method: For testing the SPM, 125 angles from three anatomical planes were measured three times in order to evaluate the accuracy and reliability. The accuracy of SPM in measuring dynamic motion was evaluated using digital motion analysis system. The motion pattern captured by two measuring methods was compared with each other. In result, the percentage error and Cronbach coefficient alpha were calculated to evaluate the accuracy and reliability. Results: The percentage error was 0.35% in flexion-extension on sagittal plane, 0.43% in lateral bending on coronal plane, and 0.40% in twisting on transverse plane. The Cronbach coefficient alpha was 1.00, 0.99 and 0.99 in sagittal, coronal and transvers plane, respectively. Conclusion: The SPM showed less than 1% error for static measurement, and showed reasonably similar pattern with the digital motion system. Application: The results of this study showed that the SPM can be the measuring method of spine pelvis motion that enhances the kinematic analysis of low back dynamics.

촬상단면내의 MRI 체동 아티팩트의 제거 (Cancellation of MRI Motion Artifact in Image Plane)

  • 김응규;권영도
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.631-634
    • /
    • 1999
  • In this work, a new algorithm for canceling MRI artifact in the image plane is presented. In the conventional approach, the motions in the X(readout) direction and Y(the phase encoding) direction are estimated simultaneously. However, the feature of each X and Y directional motion is different. First, we notice that the X directional motion corresponds to a shift of the X directional spectrum of the MRI signal, and the non zero area of the spectrum just corresponds to X axis projected area of the density function. So the motion is estimated by tracing the edges of the spectrum, and the X directional motion is canceled by shifting the spectrum in inverse direction. Next, the Y directional motion is canceled using a new constraint, with which the motion component and the true image component can be separated. This algorithm is shown to be effective by simulations.

  • PDF

비트 플레인을 이용한 움직임 추정기 설계의 관한 연구 (A Study on Motion Estimator Design Using Bit Plane)

  • 김병철;조원경
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.403-406
    • /
    • 1999
  • Among the compression methods of moving picture information, a motion estimation method is used to remove time-repeating. The Block Matching Algorithm in motion estimation methods is the commonest one. In recent days, it is required the more advanced high quality in many image processing fields, for example HDTV, etc. Therefore, we have to accomplish not by means of Partial Search Algorithm, but by means of Full Search Algorithm in Block Matching Algorithm. In this paper, it is suggested a structure that reduce total calculation quantity and size, because the structure using Bit Plane select and use only 3bit of 8bit luminance signal.

  • PDF

MRI 촬상단면내의 체동 아티팩트의 제거 (Cancellation of Motion Artifact in MRI Image Plane)

  • 김응규;권영도
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.1075-1078
    • /
    • 1999
  • In this study, a new algorithm for canceling MRI artifacts through the translational motion of image plane is presented. Bloating is often makes problems in a clinical diagnosis. Assuming that the head moves up and down due to breathing, rigid translational motions in only y(phase encoding axis) direction is treated. First, we notice that the x directional motion corresponds to a shift of the x directional spectrum of the MRI signal, and the non zero area of the spectrum just corresponds to x axis projected area of the density function. So the motion is estimated by tracing the edges of the spectrum, and the x directional motion is canceled by shifting the spectrum in inverse direction. Next, the y directional motion is canceled using a new constraint, with which the motion component and the true image component can be separated. Finally, the effectiveness of this algorithm is shown by using a phantom with simulated motions.

  • PDF

마찰기인 접촉 강성을 가지는 2-자유도계 면외 방향 진동 시스템의 선형 안정성 해석 (Linear Stability Analysis of an Out-of-plan Motion of Vibration of a Two Degree-of-freedom with Contact Stiffness)

  • 조용구;신기홍;이현영;오재응;이수갑
    • 한국소음진동공학회논문집
    • /
    • 제15권3호
    • /
    • pp.259-265
    • /
    • 2005
  • A two-degree-of-freedom out-of-plane model with contact stiffness is presented to describe dynamical interaction between the pad and disc of a disc brake system. It is assumed that the out-of-plane motion of the system depends on the friction force acting along the in-plane direction. Dynamic friction coefficient is modelled as a function of both in-plane relative velocity and out-of-plane normal force. When the friction coefficient depends only on the relative velocity, the contact stiffness has the role of negative stiffness. The results of stability analysis show that the stiffness of both pad and disc is equally important. Complex eigen value analysis is conducted for the case that the friction coefficient is also dependent on the normal force. The results further verify the importance of the stiffness. It has also been found that increasing the gradient of friction coefficient with respect to the normal force makes the system more unstable.

A Finite Thin Circular Beam Element for In-Plane Vibration Analysis of Curved Beams

  • Kim Chang-Boo;Park Jung-Woo;Kim Sehee;Cho Chongdu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2187-2196
    • /
    • 2005
  • In this paper, the stiffness and the mass matrices for the in-plane motion of a thin circular beam element are derived respectively from the strain energy and the kinetic energy by using the natural shape functions of the exact in-plane displacements which are obtained from an integration of the differential equations of a thin circular beam element in static equilibrium. The matrices are formulated in the local polar coordinate system and in the global Cartesian coordinate system with the effects of shear deformation and rotary inertia. Some numerical examples are performed to verify the element formulation and its analysis capability. The comparison of the FEM results with the theoretical ones shows that the element can describe quite efficiently and accurately the in-plane motion of thin circular beams. The stiffness and the mass matrices with respect to the coefficient vector of shape functions are presented in appendix to be utilized directly in applications without any numerical integration for their formulation.