• Title/Summary/Keyword: In-plane Mode

Search Result 775, Processing Time 0.031 seconds

A Study on Mobile Antenna System Design with Tri-band Operation for Broadband Satellite Communications and DBS Reception (광대역 위성 통신/방송용 삼중 대역 이동형 안테나 시스템 설계에 관한 연구)

  • Eom Soon-Young;Jung Young-Bae;Son Seong-Ho;Yun Jae-Seung;Jeon Soon-Ick
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.461-475
    • /
    • 2006
  • In this paper, it is described about the tri-band mobile antenna system design to provide broadband multimedia and direct broadcasting services using goo-stationary Koreasat 3, simultaneously operated in Ka/K/Ku band. The radiating part of the antenna system with a fan beam characteristic in the elevation plane is composed of the quasi-offset dual shaped reflector and the tri-band feeder. The tri-band feeder is also composed of the Ka/K dual band feeder with the protruding dielectric rod, the circular polarizer, the ortho-mode transducer and the circular-polarized Ku band feed array. Especially, the Ka/K dual band circular polarizer was realized firstly using the comb-type structure. For fast satellite-tracking on the movement, the Ku band feed array has the structure of the $2{\times}2$ active phased array which can make electrical beams. And, the circular-polarized characteristic in the feed array was improved by $90^{\circ}$ rotating arrangement of four radiating elements polarized circularly by a $90^{\circ}$ hybrid coupler, respectively. Four beam forming channels to make electrical beams at Ku band are divided into the main beam channel and the tracking beam channel in the output, and noise temperature characteristics of each channel were analyzed on the basis of the contributions of internal sub_units. From the fabricated antenna system, the output power at $P_{1dBc}$ of Ka_Tx channel was measured more than 34.1 dBm and the measured noise figures of K/Ku_Rx channels were less than 2.4 dB and 1.5 dB, respectively, over the operating band. The radiation patterns with co- and cross-polarization in the tri-band were measured using a near-field measurement in the anechoic chamber. Especially, Ku radiation patterns were measured after correcting each initial phase of active channels with partial radiation patterns obtained from the independent excitation of each channel. The antenna gains measured in Ka/K/Ku band of the antenna system were more than 39.6 dBi, 37.5 dBi, 29.6 dBi, respectively. And, the antenna system showed good system performances such as Ka_Tx EIRP more than 43.7 dBW and K/Ku_Rx G/T more than 13.2 dB/K and 7.12 dB/K, respectively.

Relationships between Texture and Physical Properties of Jurassic Unagsan and Cretaceous Sogrisan Granites (쥬라기 운악산 및 백악기 속리산 화강암류의 조직과 물성과의 관계)

  • Yun Hyun-Soo;Park Deok-Won;Hong Sei-Sun;Kim Ju-Yong;Yang Dong-Yoon;Chang Soobum
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.169-184
    • /
    • 2005
  • Unagsan and Sogrisan granites are widely distributed in the northern Gyeonggi massif and middle Ogcheon belt, respectively, and they show different petrologic characteristics as follows. The former has compact textures and light grey colors, and the latter has spotted miarolitic textures and pink colors. Most of the samples selected for tests are fresh and coarse-grained. And bored core samples were prepared so that they are vertical to the rift plane. The results of modal analysis show that Unagsan granite has significantly higher quartz and plagioclase contents (Qz+Pl) than Sogrisan granite. In contrast, alkali feldspar content (Af) of Sogrisan granite is much higher than that of Unagsan granite. Therefore, it is believed that the light grey colors of Unagsan granite are due to relatively high Qz+Pl, and the pink colors of Sogrisan granite are caused by higher Af. Fractures in Sogrisan granite have strongly perpendicular strike patterns and more dip values close to vertical compared with the fractures in Unagsan granite. Results of the fracture pattern analysis suggest that the Sogrisan granite has better potential to produce dimension stones than the Unagsan granite. However, miarolitic textures often found in the Sogrisan granite may be one of the factors reducing the granite quality. The Unagsan and Sogrisan granites have similar specific gravity values of 2.60 and 2.57, respectively. Absorption ratios and porosity values of Sogrisan granite are higher than those of Unagsan granite, and they shows linearly positive correlations. Compressive and tensile strengths of the Unagsan granite are generally higher than those of Sogrisan granite. These differences and variation trends found in physical properties of Unagsan and Sogrisan granite can be explained by the differences in the textures of Unagsan and Sogrisan granites, namely compact and miarolitic textures respectively. For Unagsan granite, compressive and tensile strengths are negatively correlated with porosity but for Sogrisan granite no specific correlations are found. This is probably due to the irregular dispersion patterns of miarolitic textures formed during the later stages of magmatic processes. Contrary to the trends found in absorption ratios, both granites have similar values of abrasive hardness, which can be explained by higher Qz+Af of the Sogrisan granite than those of the Unagsan granite and that quartz and alkali feldspar have relatively larger hardness values. For Sogrisan granite, compressive strength shows slightly positive correlations with Qz+Af+Pl and negative correlations with biotite and accessory mineral contents (Bt+Ac).

Two Dimensional Size Effect on the Compressive Strength of Composite Plates Considering Influence of an Anti-buckling Device (좌굴방지장치 영향을 고려한 복합재 적층판의 압축강도에 대한 이차원 크기 효과)

  • ;;C. Soutis
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section ($length{\;}{\times}{\;}width$) was investigated on the compressive behavior of a T300/924 $\textrm{[}45/-45/0/90\textrm{]}_{3s}$, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm{\;}and{\;}90mm{\;}{\times}{\;}90mm$ gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

Improved Device Performance Due to AlxGa1-xAs Barrier in Sub-monolayer Quantum Dot Infrared Photodetector

  • Han, Im Sik;Byun, Young-Jin;Lee, Yong Seok;Noh, Sam Kyu;Kang, Sangwoo;Kim, Jong Su;Kim, Jun Oh;Krishna, Sanjay;Ku, Zahyun;Urbas, Augustine;Lee, Sang Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.298-298
    • /
    • 2014
  • Quantum dot infrared photodetectors (QDIPs) based on Stranski-Krastanov (SK) quantum dots (QDs) have been widely explored for improved device performance using various designs of heterostructures. However, one of the biggest limitations of this approach is the "pancake" shape of the dot, with a base of 20-30 nm and a height of 4-6 nm. This limits the 3D confinement in the quantum dot and reduces the ratio of normal incidence absorption to the off-axis absorption. One of the alternative growth modes to the formation of SK QDs is a sub-monolayer (SML) deposition technique, which can achieve a much higher density, smaller size, better uniformity, and has no wetting layer as compared to the SK growth mode. Due to the advantages of SML-QDs, the SML-QDIP design has attractive features such as increased normal incidence absorption, strong in-plane quantum confinement, and narrow spectral wavelength detection as compared with SK-DWELL. In this study, we report on the improved device performance of InAs/InGaAs SML-QDIP with different composition of $Al_xGa1-_xAs$ barrier. Two SML-QDIPs (x=0.07 for sample A and x=0.20 for sample B) are grown with the 4 stacks 0.3 ML InAs. It is investigated that sample A with a confinement-enhanced (CE) $Al_{0.22}Ga_{0.78}As$ barrier had a single peak at $7.8{\mu}m$ at 77 K. However, sample B with an $Al_{0.20}Ga_{0.80}As$ barrier had three peaks at (${\sim}3.5{\mu}m$, ${\sim}5{\mu}m$, ${\sim}7{\mu}m$) due to various quantum confined transitions. The measured peak responsivities (see Fig) are ~0.45 A/W (sample A, at $7.8{\mu}m$, $V_b=-0.4V$ bias) and ~1.3 A/W (sample B, at $7{\mu}m$, $V_b=-1.5V$ bias). At 77 K, sample A and B had a detectivity of $1.2{\times}10^{11}cm.Hz^{1/2}/W$ ($V_b=-0.4V$ bias) and $5.4{\times}10^{11}cm.Hz^{1/2}/W$ ($V_b=-1.5V$ bias), respectively. It is obvious that the higher $D^*$ of sample B (than sample A) is mainly due to the low dark current and high responsivity.

  • PDF

Characterization of SiC nanowire Synthesized by Thermal CVD (열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구)

  • Jung, M.W.;Kim, M.K.;Song, W.;Jung, D.S.;Choi, W.C.;Park, C.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.307-313
    • /
    • 2010
  • One-dimensional cubic phase silicon carbide nanowires (${\beta}$-SiC NWs) were efficiently synthesized by thermal chemical vapor deposition (TCVD) with mixtures containing Si powders and nickel chloride hexahydrate $(NiCl_2{\cdot}6H_2O)$ in an alumina boat with a carbon source of methane $(CH_4)$ gas. SEM images are shown that the growth temperature (T) of $1,300^{\circ}C$ is not enough to synthesize the SiC NWs owing to insufficient thermal energy for melting down a Si powder and decomposing the methane gas. However, the SiC NWs could be synthesized at T>$1,300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is T=$1,400^{\circ}C$. The synthesized SiC NWs have the diameter with an average range between 50~150 nm. Raman spectra clearly revealed that the synthesized SiC NWs are forming of a cubic phase (${\beta}$-SiC). Two distinct peaks at 795 and $970 cm^{-1}$ in Raman spectra of the synthesized SiC NWs at T=$1,400^{\circ}C$ represent the TO and LO mode of the bulk ${\beta}$-SiC, respectively. XRD spectra are also supported to the Raman spectra resulting in the strongest (111) peaks at $2{\Theta}=35.7^{\circ}$, which is the (111) plane peak position of 3C-SiC. Moreover, the gas flow rate of 300 sccm for methane is the optimal condition for synthesis of a large amount of ${\beta}$-SiC NW without producing the amorphous carbon structure shown at a high methane flow rate of 800 sccm. TEM images are shown two kinds of the synthesized ${\beta}$-SiC NWs structures. One is shown the defect-free ${\beta}$-SiC NWs with a (111) interplane distance of 0.25 nm, and the other is the stacking-faulted ${\beta}$-SiC NWs. Also, TEM images exhibited that two distinct SiC NWs are uniformly covered with $SiO_2$ layer with a thickness of less 2 nm.