• Title/Summary/Keyword: In-place update

Search Result 69, Processing Time 0.023 seconds

An Advanced Adaptive Garbage Collection Policy by Considering the Operation Characteristics (연산 특성을 고려한 향상된 적응적 가비지 컬렉션 정책)

  • Park, Song-Hwa;Lee, Jung-Hoon;Lee, Won-Oh;Kim, Hyun-Woo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.269-277
    • /
    • 2018
  • NAND flash memory has widely been used because of non-volatility, low power consumption and fast access time. However, it suffers from inability to provide update-in-place and the erase cycle is limited. The unit of read/write operation is a page and the unit of erase operation is a block. Moreover erase operation is slower than other operations. We proposed the Adaptive Garbage Collection (called "AGC") policy which focuses on not only reducing garbage collection process time for real-time guarantee but also wear-leveling for a flash memory lifetime. The AGC performs better than Cost-benefit policy and Greedy policy. But the AGC does not consider the operation characteristics. So we proposed the Advanced Adaptive Garbage Collection (called "A-AGC") policy which considers the page write operation count and block erase operation count. The A-AGC reduces the write operations by considering the data update frequency and update data size. Also, it reduces the erase operations by considering the file fragmentation. We implemented the A-AGC policy and measured the performance compared with the AGC policy. Simulation results show that the A-AGC policy performs better than AGC, specially for append operation.

A Wear-leveling Scheme for NAND Flash Memory based on Update Patterns of Data (데이터 갱신 패턴 기반의 낸드 플래시 메모리의 블록 사용 균일화 기법)

  • Shin, Hyo-Joung;Choi, Don-Jung;Kim, Bo-Keong;Yoon, Tae-Bok;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.761-767
    • /
    • 2010
  • In the case of NAND flash memory, a whole block needs to be erased for update operations because update-in- place operations are not supported in NAND flash memory. Blocks of NAND flash memory have the limited erasure cycles, so frequently updated data (hot data) easily makes blocks worn out. As the result, the capacity of NAND flash memory will be reduced by hot data. In this paper, we propose a wear-leveling algorithm by discriminating hot and cold data based on the update patterns of data. When we applied this scheme to NAND flash memory, we confirmed that the erase counts of blocks became more uniform by mapping hot data to a block with a low erase count and cold data to block with a high erase count.

A Non-fixed Log Area Management Technique in Block for Flash Memory DBMS (플래시메모리 DBMS를 위한 블록의 비고정적 로그 영역 관리 기법)

  • Cho, Bye-Won;Han, Yong-Koo;Lee, Young-Koo
    • Journal of KIISE:Databases
    • /
    • v.37 no.5
    • /
    • pp.238-249
    • /
    • 2010
  • Flash memory has been studied as a storage medium in order to improve the performance of the system using its high computing speed in the DBMS field where frequent data access is needed. The most difficulty using the flash memory is the performance degradation and the life span shortening of flash memory coming from inefficient in-place update. Log based approaches have been studied to solve inefficient in-place update problem in the DBMS where write operations occur in smaller size of data than page frequently. However the existing log based approaches suffer from the frequent merging operations, which are the principal cause of performance deterioration. Thus is because their fixed log area management can not guarantee a sufficient space for logs. In this paper, we propose non-fixed log area management technique that can minimize the occurrence of the merging operations by promising an enough space for logs. We also suggest the cost calculation model of the optimal log sector number minimizing the system operation cost in a block. In experiment, we show that our non-fixed log area management technique can have the improved performance compared to existing approaches.

RFFS : Design of a Reliable NAND Flash File System for Embedded system (임베디드 시스템을 위한 신뢰성 있는 NAND 플래시 파일 시스템의 설계)

  • Lee Tae-hoon;Park Song-hwa;Kim Tae-hoon;Lee Sang-gi;Lee Joo-Kyong;Chung Ki-Dong
    • The KIPS Transactions:PartA
    • /
    • v.12A no.7 s.97
    • /
    • pp.571-582
    • /
    • 2005
  • NAND flash memory has advantages of non-volatility, little power consumption and fast access time. However, it suffers from inability that dose not provide to update-in-place and the erase cycle is limited. Moreover, the unit of read and write operations is a page. A NAND flash file system called YAFFS has been proposed. But YAFFS has several problems to be addressed. In this paper, the Reliable Flash File System(RFFS) for NAND flash memory is designed and evaluated. In designing a file system the following four issues must be considered in particular for the design: (i) to minimize a repairing time when the system fault occurs, (ii) to balance the number of block erase operations by offering wear leveling policy, and (iii) to reduce turnaround time of memory operations by reducing the amount of data written. We demonstrate and evaluate the performance of the proposed schemes.

Scaling down data/index page structure of the NVRAM based DBMS with the small size blocks (소형 블록 DBMS의 데이터/인덱스 페이지 구조 소형화를 통한 NVRAM 성능 개선)

  • Bae, Sang-Hee;Lee, Taehwa;Cha, Jaehyuk
    • Journal of Digital Contents Society
    • /
    • v.14 no.1
    • /
    • pp.15-23
    • /
    • 2013
  • In response to the demands of large-scale data processing with low-power and new application, a storage system using SSD (Solid State Disk/Drive) with fast input-output performance instead of hard disc has appeared as storage device. Studies on methods to overcome specific problems of SSD such as various processing data units, out-place-update and limited delete count have been actively conducted. However, declining performance and stability have not been resolved yet when storing case specific data with small scale that causes frequent random write in hard disc or SSD. This thesis suggests a system structure that stores index requesting frequent random write in NVRAM capable of byte access by using characteristics such as byte unit fast read / write of NVRAM, non-volatile and smaller size of actual changed data size in index page than block size.

New Flash Memory Management Method for Reliable Flash Storage Systems (신뢰성 있는 플래시메모리 저장시스템 구축을 위한 플래시메모리 저장 공간 관리 방법)

  • Kim, Han-Joon;Lee, Sang-Goo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.6
    • /
    • pp.567-582
    • /
    • 2000
  • We propose a new way of managing flash memory space for flash memory-specific file system based on log-structured file system. Flash memory has attractive features such as non-volatility, and fast I/O speed, but it also suffers from inability to update in place and limited usage cycles. These drawbacks require many changes to conventional storage (file) management techniques. Our focus is on lowering cleaning cost and evenly utilizing flash memory cells while maintaining a balance between the two often-conflicting goals. The proposed cleaning method performs well especially when storage utilization and the degree of locality are high. The cleaning efficiency is enhanced by dynamically separating cold data and non-cold data. The second goal, cycle-leveling is achieved to the degree where the maximum difference between erase cycles is below the error range of the hardware. Simulation results show that the proposed method has significant benefit over naxve methods: maximum of 35% reduction in cleaning cost with even spreading writes across segments.

  • PDF

XML Schema Evolution Approach Assuring the Automatic Propagation to XML Documents (XML 문서에 자동 전파하는 XML 스키마 변경 접근법)

  • Ra, Young-Gook
    • The KIPS Transactions:PartD
    • /
    • v.13D no.5 s.108
    • /
    • pp.641-650
    • /
    • 2006
  • XML has the characteristics of self-describing and uses DTD or XML schema in order to constraint its structure. Even though the XML schema is only at the stage of recommendation yet, it will be prevalently used because DTD is not itself XML and has the limitation on the expression power. The structure defined by the XML schema as well as the data of the XML documents can vary due to complex reasons. Those reasons are errors in the XML schema design, new requirements due to new applications, etc. Thus, we propose XML schema evolution operators that are extracted from the analysis of the XML schema updates. These schema evolution operators enable the XML schema updates that would have been impossible without supporting tools if there are a large number of XML documents complying the U schema. In addition, these operators includes the function of automatically finding the update place in the XML documents which are registered to the XSE system, and maintaining the XML documents valid to the XML schema rather than merely well-formed. This paper is the first attempt to update XML schemas of the XML documents and provides the comprehensive set of schema updating operations. Our work is necessary for the XML application development and maintenance in that it helps to update the structure of the XML documents as well as the data in the easy and precise manner.

Update on the Taxonomy of Clinically Important Anaerobic Bacteria (임상적으로 중요한 무산소성 세균의 분류 업데이트)

  • Myungsook, Kim
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.4
    • /
    • pp.239-248
    • /
    • 2022
  • The taxonomy of bacteria in the field of clinical microbiology is in a state of constant flux. A large-scale revamping of the classification and nomenclature of anaerobic bacteria has taken place over the past few decades, mainly due to advances in molecular techniques such as 16S rRNA and whole genome sequencing (WGS). New genera and species have been added, and existing genera and species have been reclassified or renamed. A major role of the clinical microbiological laboratories (CMLs) is the accurate identification (ID) and appropriate antimicrobial susceptibility testing (AST) for clinically important bacteria, and rapid reporting and communication of the same to the clinician. Taxonomic changes in anaerobic bacteria could potentially affect the choice of appropriate antimicrobial agents and the antimicrobial breakpoints to use. Furthermore, current taxonomy is important to prevent treatment failures of emerging pathogenic anaerobes with antimicrobial resistance. Therefore, CMLs should periodically update themselves on the changes in the taxonomy of anaerobic bacteria and suitably inform clinicians of these changes for optimum patient care. This article presents an update on the taxonomy of clinically important anaerobic bacteria, together with the previous names or synonyms. This taxonomy update can help guide antimicrobial therapy for anaerobic bacterial infections and prevent treatment failure and can be a useful tool for both CMLs and clinicians.

Write Request Handling for Static Wear Leveling in Flash Memory (SSD) Controller

  • Choo, Chang;Gajipara, Pooja;Moon, Il-Young
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.181-185
    • /
    • 2014
  • The lifetime of a solid-state drive (SSD) is limited because of the number of program and erase cycles allowed on its NAND flash blocks. Data cannot be overwritten in an SSD, leading to an out-of-place update every time the data are modified. This result in two copies of the data: the original copy and a modified copy. This phenomenon is known as write amplification and adversely affects the endurance of the memory. In this study, we address the issue of reducing wear leveling through efficient handling of write requests. This results in even wearing of all the blocks, thereby increasing the endurance period. The focus of our work is to logically divert the write requests, which are concentrated to limited blocks, to the less-worn blocks and then measure the maximum number of write requests that the memory can handle. A memory without the proposed algorithm wears out prematurely as compared to that with the algorithm. The main feature of the proposed algorithm is to delay out-of-place updates till the threshold is reached, which results in a low overhead. Further, the algorithm increases endurance by a factor of the threshold level multiplied by the number of blocks in the memory.

Efficient Dynamic Index Structure for SSD (SPM) (SSD에 적합한 동적 색인 저장 구조 : SPM)

  • Jin, Du-Seok;Kim, Jin-Suk;You, Beom-Jong;Jung, Hoe-Kyung
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.54-62
    • /
    • 2010
  • Inverted index structures have become the most efficient data structure for high performance indexing of large text collections, especially online index maintenance, In-Place and merge-based index structures are the two main competing strategies for index construction in dynamic search environments. In the above-mentioned two strategies, a contiguity of posting information is the mainstay of design for online index maintenance and query time. Whereas with the emergence of new storage device(SSD, SCRAM), those do not consider a contiguity of posting information in the design of index structures because of its superiority such as low access latency and I/O throughput speeds. However, SSD(Solid State Drive) is not well suited for traditional inverted structures due to the poor random write throughput in practical systems. In this paper, we propose the new efficient online index structure(SPM) for SSD that significantly reduces the query time and improves the index maintenance performance.