• Title/Summary/Keyword: In-pipe robot

Search Result 96, Processing Time 0.035 seconds

Pattern Analyses for Semi-Looper Type Robots with Multiple Links

  • Watanabe, Keigo;Liu, Guang Lei;Izumi, Kiyotaka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.963-968
    • /
    • 2005
  • For worm robots applied to pipe inspection and colonoscopy, earthworm-like robots that have a locomotion pattern in backward wave or green caterpillar-like robots that have a locomotion pattern in forward wave have been studied widely. Note however that a method using a single and fixed locomotion pattern is not desirable in the sense of mobility cost, if there are various changes in pipe diameter. In this paper, locomotion patterns are considered for a semi-looper-like robot, which adopts a locomotion pattern of green caterpillars as the basic motion and sometimes can realize a locomotion pattern of looper, whose motion approximately consists of two rhythms or relatively low rhythm.

  • PDF

A Passively Growing Sheath for Reducing Friction of Linearly Moving Structures (리니어 구동 구조의 마찰 저감을 위한 수동형 성장 피복)

  • Seo, Hanbeom;Kim, Dongki;Jung, Gwang-Pil
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.159-163
    • /
    • 2022
  • A linearly moving structure in the area where the friction force is dominant - such as ducts filled with grease in the nuclear power plant - experiences increase in friction since the contact surface gets larger as the structure proceeds. To solve this problem is critical for the pipe inspection robot to investigate further area and this makes the system more energy-efficient. In this paper, we propose a passively growing sheath that can be added to linearly moving structures using zipper mechanism. The mechanism enables the linearly moving structures to maintain rolling contact condition against external environment, which provides substantial reduction in kinetic friction. To analyze the effect of the mechanism's head shape, we establish a physical model and compare to the experimental results. Finally, we have shown that the passively growing sheath can be successfully applied to the pipe inspection robot for the nuclear power plant.

Posture Estimation Method for a Cylindrical Object (원기둥형 물체의 자세 인식 방법)

  • Jeong, Kyu-Won
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.234-239
    • /
    • 2003
  • A cylindrical shape object is widely used as a mechanical part and a water pipe or an oil pipeline which are of cylindrical shape are widely used in the infrastructure. In order to handling such objects automatically using a robot, the posture i.e. orientation in 3D space should be recognized. However, since there is no edge or vertex in the pipe, it is very difficult task for the robot. In this paper in order to guide the robot, two kind of algorithms which find the axis using the measured range data from the robot to the object surface are to be developed. The algorithms are verified using both the simulated range data and the measured one.

  • PDF

Roll/Pitch Attitude Control of an Underwater Robot using Ballast Tanks (밸러스트 탱크를 이용한 수중로봇의 Roll/Pitch의 자세제어)

  • Choi, Sunghee;Do, Jinhyung;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.688-693
    • /
    • 2013
  • This paper proposes a new method on attitude control of an underwater robot by using five ABTs (Attitude Ballast Tank). A pipe is connected to the bottom of the ABTs and transfers water by a pump, while another pipe is connected to the top of the ABT to transfer air. The buoyancy center of the underwater robot can be changed by means of the water transfer. This way, the attitude of the underwater robot can be maintained and/or controlled as desired. The changes of the center of gravity and the buoyancy central are estimated by a Lagrangian function which is similar to that for an inverted pendulum. The controller in this paper is designed by modeling of the underwater robot and selecting suitable gains of a PD controller which has fast response characteristics. This paper shows the possibility of the attitude control of an underwater robot by changing the center of gravity and the buoyancy center of the robot. Moreover, experimental results verify that the controller is effective in maintaining Roll/Pitch of the underwater robot with very low power consumption.

Development of Self-Driven Pneumatic Robot for Boresonic Examination of Turbine Rotor (터빈로터 중심공 검사용 자기주행 공압형 로봇 개발)

  • Kang, Baejun;An, Myungjae;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.31-38
    • /
    • 2021
  • This study presents a new principle for driving the robot aimed at reducing the position error for the boresonic examination of turbine rotor. The conventional method of inspection is performed by installing manipulator onto the flange of the turbine rotor and connecting a pipe, which is then being pushed into the bore. The longer the pipe gets, the greater sagging and distortion appear, making it difficult for the ultrasonic sensor to contact with the internal surface of the bore. A pneumatic pressure will ensure the front or rear feet of the robot in close contact with the inner wall to prevent slipping, while the ball screw on the body of the robot will rotate to drive it in the axial direction. The compression force required for tight contact was calculated in the form of a three-point support, and a static structural simulation analysis was performed by designing and modeling the robot mechanism. The driving performance and ultrasonic detection ability have been tested by fabricating the robot, the test piece for ultrasonic calibration and the transparent mock-up for robot demonstration. The tests have confirmed that no slipping occurs at a certain pneumatic pressure or over.

Evaluation on the Application of In-Pipe Inspection Robot with Multiple Lasers and Cameras (카메라와 다중 레이저를 이용한 배관 탐사 로봇 기구의 적용성 평가)

  • Nam, Mun-Ho;Park, Seong-Wook;Baek, Seung-Hae;Park, Soon-Yong;Kim, Chang-Hoi;Kim, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1780-1781
    • /
    • 2011
  • There have been numerous studies on application of robots to in-pipe inspection system. In this thesis, a mobile robot that can move through elbows and vertical pipes having diameter 100mm is developed. Defect detection technology for locating wall-thinnings, corrosions and foreign materials is developed for high temperature and pressure pipings in thermal power plants, utilizing laser sensors installed on the robot. Actual defect detection performance is evaluated with application of the developed robot system to a mock-up pipings.

  • PDF

Control of Automatic Pipe Cutting Robot with Magnet Binder Using Learning Controller (반복학습제어기를 이용한 자석식 자동 파이프 절단 로봇의 제어)

  • Lee Sung-Whan;Kim Gook-Hwan;Rhim Sung-Soo;Lee Soon-Geul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.541-546
    • /
    • 2005
  • Tracking control of an automatic pipe cutting robot (APCROMB) is studied. Using magnetic force APCROMB, which is designed and developed in Kyung Hee University, binds itself to the pipe and executes unmanned cutting process. The gravity effect on the movement of APCROMB varies as it rotates around the cylindrical pipe laid in the gravitational field. To maintain a constant velocity and consistent cutting performance against the varying gravitational effect, the authors adopt a multi-rate repetitive learning controller (MRLC), which learns the required effort to cancel the repetitive tracking errors caused by nonlinear effect. In addition to the varying gravity effect other types of nonlinear disturbances including backlash in the driving system and the slip between the wheels of APCROMB and the pipe also cause degradation in the cutting process. In order to identify those nonlinear disturbances the position estimation based on the encoder attached at the motor is not good enough. To identify the absolute angular position of APCROMB the authors propose the angular position estimation based on the signals from a MEMS-type two-axis accelerometer mounted on APCROMB. The tracking performances of APCROMB with a MRLC using the encoder-based position estimation is experimentally measured and results are shown. Also the difference between the encoder-based angular displacement measurement and the accelerometerbased angular displacement measurement is included.

  • PDF

A development of a general purposed control system of robot end-effector for inspection and maintenance of steam generator heat pipe (증기발생기전열관의 검사정비로봇용 엔드이펙터의 범용 제어시스템 개발)

  • Park, Ki-Tae;Kim, Seon-Jin;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 2013
  • The general purposed control system for driving a motion of many different typed robot end-effector, which consists of a controller based on ARM Cotex M3-11017 MCU and an application software for generating a motion of end-effector, was developed. Experimental results show that a positioning error is nearly negligible and a repeatability error is 0.04%. Accordingly the developed control system can be applied practically to actuate a robot end-effector for inspection and maintenance of steam generator heat pipe in nuclear power plant.

A Real-time and Off-line Localization Algorithm for an Inpipe Robot by Detecting Elbows (엘보 인식에 의한 배관로봇의 실시간 위치 추정 및 후처리 위치 측정 알고리즘)

  • Lee, Chae Hyeuk;Kim, Gwang Ho;Kim, Jae Jun;Kim, Byung Soo;Lee, Soon Geul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1044-1050
    • /
    • 2014
  • Robots used for pipe inspection have been studied for a long time and many mobile mechanisms have been proposed to achieve inspection tasks within pipelines. Localization is an important factor for an inpipe robot to perform successful autonomous operation. However, sensors such as GPS and beacons cannot be used because of the unique characteristics of inpipe conditions. In this paper, an inpipe localization algorithm based on elbow detection is presented. By processing the projected marker images of laser pointers and the attitude and heading data from an IMU, the odometer module of the robot determines whether the robot is within a straight pipe or an elbow and minimizes the integration error in the orientation. In addition, an off-line positioning algorithm has been performed with forward and backward estimation and Procrustes analysis. The experimental environment has consisted of several straight pipes and elbows, and a map of the pipeline has been constructed as the result.