• Title/Summary/Keyword: In-network caching

Search Result 169, Processing Time 0.026 seconds

Distributed Optimal Path Generation Based on Delayed Routing in Smart Camera Networks

  • Zhang, Yaying;Lu, Wangyan;Sun, Yuanhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3100-3116
    • /
    • 2016
  • With the rapid development of urban traffic system and fast increasing of vehicle numbers, the traditional centralized ways to generate the source-destination shortest path in terms of travel time(the optimal path) encounter several problems, such as high server pressure, low query efficiency, roads state without in-time updating. With the widespread use of smart cameras in the urban traffic and surveillance system, this paper maps the optimal path finding problem in the dynamic road network to the shortest routing problem in the smart camera networks. The proposed distributed optimal path generation algorithm employs the delay routing and caching mechanism. Real-time route update is also presented to adapt to the dynamic road network. The test result shows that this algorithm has advantages in both query time and query packet numbers.

Doughnut: An improved P2P Pastry Overlay Network with Efficient Locality and Caching (Doughnut: 효율적인 지역성 및 캐슁을 사용하는 향상된 P2P Pastry 오버레이 네트워크)

  • Kim, Myung-Won;Kwak, Hu-Keun;Chung, Kyu-Sik
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.245-256
    • /
    • 2009
  • Pastry overlay network is one of structured P2Ps using DHT(Distributed Hash Table). To reduce the number of messages among nodes, Rosary and LAR have been proposed by exploiting spatial locality and caching, respectively, in the Pastry. Rosary consists of Inter-Pastry and Intra-Pastry. A root node is assigned as a representative in each Intra-Pastry and it has the responsibility of Inter-Pastry and Intra-Pastry routing. Therefore, Rosary has several disadvantages; 1) low fault tolerance in case of root node failure 2) routing hop count increases because of the use of root nodes compared to the existing structured P2Ps, and 3) the communication load is concentrated in some specific areas. LAR has inefficient problems in that caching is not distributed among nodes in Intra-Pastry and caching is used by only nodes in the Intra-Pastry. In this paper, we propose an improved Pastry called Doughnut to overcome the above problems of Rosary and LAR. By dividing nodes with the local characteristics, the Doughnut consists of Inter-Pastry and Intra-Pastry, and all nodes have the responsibility of Inter-Pastry and Intra-Pastry routing. This results in that all nodes perform the role of the existing root node. This solves the problems of the reducing of fault-tolerance, the increasing of routing hop count, and the not-distributed communication load. Also Doughnut can use cache effectively because it guarantees the even cache distribution in local(Intra-Pastry) and the cache contents in local can be used in the other local. The proposed algorithm is implemented using simulator and the experimental results show the effectiveness of the proposed method compared to the existing method.

A Study on Mobility-Aware Edge Caching and User Association Algorithm (이동성 기반의 엣지 캐싱 및 사용자 연결 알고리즘 연구)

  • TaeYoon, Lee;SuKyoung, Lee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.47-52
    • /
    • 2023
  • Mobile Edge Computing(MEC) is considered as a promising technology to effectively support the explosively increasing traffic demands. It can provide low-latency services and reduce network traffic by caching contents at the edge of networks such as Base Station(BS). Although users may associate with the nearest BSs, it is more beneficial to associate users to the BS where the requested content is cached to reduce content download latency. Therefore, in this paper, we propose a mobility-aware joint caching and user association algorithm to imporve the cache hit ratio. In particular, the proposed algorithm performs caching and user association based on sojourn time and content preferences. Simulation results show that the proposed scheme improves the performance in terms of cache hit ratio and latency as compared with existing schemes.

A P2P Based Tactical Information Sharing System for Mobile Nodes (P2P 기반의 모바일 노드간의 전술 정보 공유 시스템)

  • Lee, Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.501-509
    • /
    • 2014
  • In NCW(Network Centric Warfare) environment, mobile nodes communicate through wireless link. But wireless link provides limited networking performance due to signal interferences or mobility of nodes. So it is quite challenge to acquire enough networking resources and use the resources efficiently. In this paper, we have proposed a P2P based tactical information sharing system which provides satisfactory visual information playout for mobile nodes(i.e., military personnel, vehicle,..) in NCW environment. Our proposed system consists of two components. One is caching-enabled switch which stores tactical information segments at its internal storage and then transports them to mobile nodes when require. Another is centralized scheduling algorithm which exploits networking resources more efficiently. To validate performance of proposed system, we performed series of experiments in wireless network testbed. Results show improved performance in terms of segment-missing ratio, networking resources usage, sharing time, and number of simultaneous playout mobile nodes with acceptable playout continuity(i.e., over 95%).

Contents Routing in the OpenFlow-based Wireless Mesh Network Environment (OpenFlow기반 무선 메쉬 네트워크 환경에서의 컨텐츠 라우팅)

  • Kim, Won-Suk;Chung, Sang-Hwa;Choi, Hyun-Suk;Do, Mi-Rim
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.810-823
    • /
    • 2014
  • The wireless mesh network based on IEEE 802.11s provides a routing based on a destination address as it inherits legacy internet architecture. However, this architecture interested in not 'what' which is originally the users goal but 'where'. Futhermore, because of the rapid increase of the number of mobile devices recently, the mobile traffic increases geometrically. It reduces the network effectiveness as increasing many packets which have same payload in the situation of many users access to the same contents. In this paper, we propose an OpenFlow-based contents routing for the wireless mesh network(WMN) to solve this problem. We implement contents layer to the legacy network layer which mesh network uses and the routing technique based on contents identifier for efficient contents routing. In addition we provide flexibility as we use OpenFlow. By using this, we implement caching technique to improve effectiveness of network as decreasing the packet which has same payload in WSN. We measure the network usage to compare the flooding technique, we measure the delay to compare environment using caching and non caching. As a result of delay measure it shows 20% of performance improve, and controller message decrease maximum 89%.

Forecasting Load Balancing Method by Prediction Hot Spots in the Shared Web Caching System

  • Jung, Sung-C.;Chong, Kil-T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2137-2142
    • /
    • 2003
  • One of the important performance metrics of the World Wide Web is how fast and precise a request from users will be serviced successfully. Shared Web Caching (SWC) is one of the techniques to improve the performance of the network system. In Shared Web Caching Systems, the key issue is on deciding when and where an item is cached, and also how to transfer the correct and reliable information to the users quickly. Such SWC distributes the items to the proxies which have sufficient capacity such as the processing time and the cache sizes. In this study, the Hot Spot Prediction Algorithm (HSPA) has been suggested to improve the consistent hashing algorithm in the point of the load balancing, hit rate with a shorter response time. This method predicts the popular hot spots using a prediction model. The hot spots have been patched to the proper proxies according to the load-balancing algorithm. Also a simulator is developed to utilize the suggested algorithm using PERL language. The computer simulation result proves the performance of the suggested algorithm. The suggested algorithm is tested using the consistent hashing in the point of the load balancing and the hit rate.

  • PDF

Game-Based Content Caching and Data Sponsor Scheme for the Content Network (콘텐츠 네트워크 환경에서 게임이론을 이용한 콘텐츠 캐싱 및 데이터 스폰서 기법)

  • Won, JoongSeop;Kim, SungWook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.7
    • /
    • pp.167-176
    • /
    • 2019
  • Recently, as the types of services that can be enjoyed in mobile telecommunication networks such as social networks and video streaming are increasing, mobile users(MUs) can access mobile contents easily by consuming mobile data. However, under a mobile telecommunication environment, MUs have to pay a high data fee to a network service provider(SP) in order to enjoy contents. The 'data sponsor' technique, introduced as a way to solve this problem, has attracted attention as a breakthrough method for enhancing contents accessibility of MUs. In this paper, we propose an algorithm that determines the optimal discount rate through the Stackelberg game in the data sponsor environment. We also propose an algorithm to design edge caching, which caches highly popular content for MUs on edge server, through many-to-many matching game. Simulation results clearly indicate that the profit for CP's content consumption is improved by about 6~11%, and the profit of CP according to the ratio of edge caching is improved by about 12% than the other existing schemes under data sponsor environment.

SVC-based Adaptive Video Streaming over Content-Centric Networking

  • Lee, Junghwan;Hwang, Jaehyun;Choi, Nakjung;Yoo, Chuck
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2430-2447
    • /
    • 2013
  • In recent years, HTTP adaptive streaming (HAS) has attracted considerable attention as the state-of-the-art technology for video transport. HAS dynamically adjusts the quality of video streaming according to the network bandwidth and device capability of users. Content-Centric Networking (CCN) has also emerged as a future Internet architecture, which is a novel communication paradigm that integrates content delivery as a native network primitive. These trends have led to the new research issue of harmonizing HAS with the in-network caching provided by CCN routers. Previous research has shown that the performance of HAS can be improved by using the H.264/SVC(scalable video codec) in the in-network caching environments. However, the previous study did not address the misbehavior that causes video freeze when overestimating the available network bandwidth, which is attributable to the high cache hit rate. Thus, we propose a new SVC-based adaptation algorithm that utilizes a drop timer. Our approach aims to stop the downloading of additional enhancement layers that are not cached in the local CCN routers in a timely manner, thereby preventing excessive consumption of the video buffer. We implemented our algorithm in the SVC-HAS client and deployed a testbed that could run Smooth-Streaming, which is one of the most popular HAS solutions, over CCNx, which is the reference implementation of CCN. Our experimental results showed that the proposed scheme (SLA) could avoid video freeze in an effective manner, but without reducing the high hit rate on the CCN routers or affecting the high video quality on the SVC-HAS client.

Shelf-Life Time Based Cache Replacement Policy Suitable for Web Environment (웹 환경에 적합한 보관수명 기반 캐시 교체정책)

  • Han, Sungmin;Park, Heungsoon;Kwon, Taewook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1091-1101
    • /
    • 2015
  • Cache mechanism, which has been a research subject for a significant period of time in computer science, has become realized in the form of web caching in network practice. Web caching has various advantages, such as saving of network resources and response time reduction, depends its performance on cache replacement policy, therefore, analysis and consideration of the environment in which a web cache operates is essential for designing better replacement policies. Thus, in the current web environment where is rapidly changing relative to the past, a new cache replacement policy is necessary to reflect those changes. In this paper we stipulate some characteristics of the web at present, propose a new cache replacement policy, and evaluate it.

A Review of Web Cache Prefetching

  • Deng, YuFeng;Manoharan, Sathiamoorthy
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.161-167
    • /
    • 2014
  • Web caches help to reduce latencies arising from slow networks through storing and reusing what was used before. Repeat access to a cached resource does not incur network latencies. However, resources that have never been used will not be found in the cache. Cache prefetching is a technique that helps to fill a cache with still-unused resources in anticipation that these resources will be used in the near future. Typically these unused resources are related to the resources that have been accessed in the recent past. While web caching exploits temporal locality, prefetching attempts to exploit spatial locality. Access to the prefetched resources will be cache hits, and therefore reduces the latency as perceived by the user. This paper reviews the cache infrastructure supported by the hypertext transfer protocol and discusses web cache prefetching in general, including Mozilla's prefetching infrastructure. It then classifies and reviews some prefetching techniques.