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I. INTRODUCTION 
 

Caches keep items of interest locally so that these items 

can be used locally without having to fetch them from 

remote sources. These items could be items used in the past 

(temporal locality) or items that are spatially close to the 

items used in the past (spatial locality). Caches are widely 

used in many cases where the latency of obtaining remote 

items is considerably larger than the local processing time. A 

CPU cache is a good example of this. CPU caches exploit 

both temporal and spatial localities in programs. 

If the requested item is found in the local cache, it is 

called a cache hit; otherwise, it is called a miss. An 

associated metric is the cache hit rate, which is the 

percentage of requests that hit in the cache. The cache hit 

rate measures how well the cache is working. 

After a cache miss, the requested item needs to be fetched 

from the remote site because it is not there in the local cache. 

Prefetching attempts to reduce such cache misses by 

fetching in advance the items that are anticipated to be used 

in the future. 

Web caching relates to caching resources and responses 

from a Web request. It focuses on reducing network latency 

and conserving network bandwidth. A Web cache can be 

deployed at the client, server, or any intermediaries in 

between (such as proxies and gateways) [1-3]. All the 

popular Web browsers cache applicable server responses so 

that repeat requests can be served locally from the cache. 

Unlike CPU caches, Web caches only use temporal 

locality and cache objects that were accessed in the past. 

Web prefetching overcomes the limitation of passive 

caching by proactively retrieving the cache resources or 

responses for future requests. This requires being able to 

predict what those future requests will be. Resources and 

responses for the predicted requests are prefetched and 

placed in the cache anticipating a near-future use. Pre-

fetching is initiated when the network is deemed lightly 

used. Once these prefetched resources are in the cache, the 
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Web caches help to reduce latencies arising from slow networks through storing and reusing what was used before. Repeat 
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cache infrastructure supported by the hypertext transfer protocol and discusses web cache prefetching in general, including 

Mozilla's prefetching infrastructure. It then classifies and reviews some prefetching techniques. 
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cache can serve them instantly on request. 

Prefetching does not reduce the data exchange rate; rather, 

it increases this rate as the prediction algorithms are not 

100% accurate and will fetch some unnecessary resources. 

Similarly, prefetching does not reduce the latency. However, 

it reduces the user-perceived latency by exploiting the 

network idle time to download the resources before the user 

needs them. 

Cho stated that prefetching is often more effective in 

providing a better user experience than increasing the 

bandwidth [4]. However, prefetching may not work well for 

congested shared networks because others may be using the 

network during your idle time [5]. 

 
 
II. GOALS OF PREFETCHING 
 

The primary purpose of prefetching is to reduce the user-

perceived latency by caching the resources before the users 

request them. In the ideal case, a user will use the same 

resources (CPU, memory, bandwidth usage, etc.) as before 

but remove all the wait time. In other words, a user gets the 

online resources instantly as she requests them. 

Exploiting spatial locality in the Web is a simple form of 

prefetching; resources close to the resource currently being 

consumed are fetched to the cache with the anticipation that 

these will be used in the near future. 

Here is an example of an ideal prefetching scenario where 

spatial locality is exploited. A person is reading online a 

100-page book in the HTML format. It takes him 1 minute 

to finish reading a page. The browser takes 10 seconds to 

download a new page. Without prefetching, this person will 

need to wait for 10 seconds after clicking the next page 

button, which leads to a total wait time of 1,000 seconds. 

Suppose that the browser is smart enough to download the 

next page when the person is reading the current page. 

When the person clicks the next button, the browser gets the 

content from its local cache and displays it. There is no wait 

time at all. It still costs the browser 1,000 seconds to 

download the 100 pages. However, this is time not seen by 

the user; the user-perceived latency has been removed. This 

is prefetching at its best.  

In reality, the above example hardly happens. For 

instance, the person may want to skip a chapter because she 

is not interested in its content. There is no obvious and exact 

way to know what someone wants in the near future. 

Downloading all the links from the current page is not an 

option. First, there is not enough time for the browser to 

fetch everything. Modern Web pages contain a lot of links 

that may point to large multimedia files (movies, music, 

etc.). The browser will take considerably more time (than 

the reading time, for example) to fetch all the links. Second, 

downloading many resources from the Internet will use a 

significant amount of bandwidth and cause network 

congestion. Third, many browsers doing the same thing will 

overload the server. For these reasons, downloading 

everything in the current page will only increase the user-

perceived latency in most cases. 

While the primary goal of prefetching is to reduce the 

user-perceived latency, there are a number of secondary 

goals that are often as important as the primary goal itself. 

These secondary goals are as follows: 1) reducing network 

bandwidth usage, 2) reducing the use of unnecessary local 

storage, and 3) not increasing the server load. 

The basic principle of prefetching is to attempt to satisfy 

the primary goal as well as the secondary goals to a reasona-

ble extent. What actually is reasonable can be quantified 

through metrics measuring the prefetching effectiveness. 

 

A. Prefetching Effectiveness 
 
Effectiveness of prefetching can, in part, be measured 

using the metrics used for measuring the effectiveness of 

Web caches. The two common metrics used for Web caches 

are the hit rate and the byte hit rate. Hit rate is the 

percentage of requests that hit in the cache. However, this 

does not tell how much bandwidth or latency has been saved; 

small files can be hits and large files can be misses. Rather 

than counting just the requests, the byte hit rate is based on 

counting the number of bytes of the hits. Cache hits for large 

objects contribute more to the byte hit ratio than cache hits 

for small objects. Therefore, the byte hit rate is a measure of 

how much bandwidth is saved by caching and prefetching. 

A prefetch-specific measure is the prefetch hit rate; the 

percentage of the items that are actually used with respect to 

the number of items that are prefetched. Just like the hit rate 

above, this prefetch hit rate can further be focused upon by 

considering the percentage of useful bytes to the total of the 

prefetched bytes. This measure, the prefetch byte hit rate, 

can help us quantify how suitable the local storage is used 

for prefetching. 

A conservative prefetching may fetch only those objects 

that are highly likely to be used and thus result in a high 

prefetch hit rate. However, this will lead to a low cache hit 

rate. Therefore, the effectiveness of prefetching needs to be 

measured by both hit rates. 

 
 
III. PREFETCHING INFRASTRUCTURE  

 

A large part of the prefetching infrastructure is based on 

the Web caching infrastructure provided by the hypertext 

transfer protocol (HTTP) [2]. To this end, this section 

reviews both the Web caching infrastructure and the pre-

fetching infrastructure. 
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A. HTTP Caching Infrastructure 
 

HTTP caching is supported by the entities in the HTTP 

request-response pipeline—browsers, caching proxies, and 

gateways. Browser caches are normally private (per user), 

while the other caches are public (or shared). Caching 

proxies are usually located at the network edge close to the 

end-user. They reduce the outgoing Web traffic, resulting in 

a better response time for the user. Gateways are located at 

the network edge close to the origin server. They reduce the 

load on the server, particularly when dynamic Web contents 

are involved. Prefetching can equally be employed at any or 

a selection of these entities. Therefore, client-driven [5], 

server-driven [6], proxy-driven [7], collaborative [8], and 

multiple-entity [9] prefetching architectures have been 

proposed in the literature. In collaborative prefetching 

architectures, entities collaborate with each other in arriving 

at prefetching decisions, while in multiple-entity prefetching 

architectures, prefetching is carried out at multiple entities 

independently. 

HTTP’s caching infrastructure governs what is cacheable 

and what is not. The response to a GET request is cacheable 

by default, while the response to a POST request is not 

cacheable by default. Cache control directives exist to 

change the default behavior.  

With cacheable entities, there are two primary indicators 

to support caching: an expiry time and a validator. The 

expiry time tells the caching entity how long the cached 

resource could be served out of the cache without 

revalidation from the origin server. Once the expiry time is 

reached, the resource should be revalidated by the origin 

server before use; if the cached copy is older than the server 

copy, then a fresh copy must be obtained. The validator 

helps with this. It is a unique hash value that represents the 

instance of the resource, and when the resource changes in 

any way, the hash would too. The cache keeps this server-

supplied validator with the cached resource, and when the 

resource is deemed expired, the cache will conditionally 

request the resource by using the validator. If the cached 

validator is older than the server’s, then the server would 

send a new copy of the resource; otherwise, the server 

would simply indicate that the resource has not changed and 

provide a new expiry time. 

Prefetching must take into account the cacheability of a 

resource. A non-cacheable resource should not be prefetched 

as doing so will invalidate the intentions of the resource 

owner. Similarly, if a resource is marked for private caching, 

this resource can only be prefetched to a private (e.g., 

browser) cache and not to public caches (e.g., caching a 

proxy or gateway).  

 

 

Fig. 1. A hint-based prefetching infrastructure. 

 

 

GET https://www.google.co.nz/search?sclient=psy-ab&... 

Accept: */* 
Referer: https://www.google.co.nz/?gfe_rd=cr... 

Accept-Encoding: gzip, deflate 

User-Agent: Mozilla/5.0... 
Host: www.google.co.nz 

DNT: 1 

Connection: Keep-Alive 

Link:</images/big.jpeg>;rel=prefetch 

Fig. 2. Prefetch hints in an HTTP request. 

 
B. Mozilla’s Prefetching Infrastructure 

 

Prefetching does two things: predict what is needed and 

prefetch to cache it. These two tasks are managed by a 

prediction engine and a prefetch engine, respectively. The 

prediction engine decides what to prefetch, typically by 

using intelligent prediction models. On the other hand, the 

prefetching engine decides when and whether to prefetch. It 

is usually integrated with a cache engine. The prefetch 

enginemonitors and uses hardware and user data (e.g., CPU 

utilization, bandwidth utilization, and user behavior) to 

make the prefetching decision. Fig. 1 illustrates a 

prefetching infrastructure based on a server-side prediction 

engine supplying prefetching hints. 

Mozilla proposed a prefetching infrastructure utilizing 

such a prediction and prefetch engine architecture, as 

depicted in Fig. 1. The infrastructure is based on hints: the 

servers supply prefetching hints, and the clients use these 

hints to prefetch resources if they can (e.g., have idle 

network time for prefetching). The prediction engine should 

ideally be located on the server side; however, Mozilla does 

not allow such an implementation. The prefetch engine is 

integrated into Firefox, Mozilla’s Internet browser. There 

are two methods to specify the prefetch hints. The first 

method adds a custom header called Link to the HTTP 

headers with the value of the suggested links. Fig. 2 shows 

the use of Link in an HTTP request. 

Should I prefetch?

request

Ask for hints

Return hints

response with hints

Yes/No

Prediction Engine Prefetching Engine
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<html> 

  <head> 
    <link rel="prefetch" href="/images/big.jpeg"> 

  </head> 

  <body> 
    Web content 

  </body> 

</html> 

Fig. 3. Prefetch hints in an HTML document. 

 

The second method is to include the suggested links in 

the HTML body by using the HTML <link> tags (see Fig. 

3). In the absence of a server-side prediction engine, these 

hints can be manually specified for each resource. Firefox 

reads the hints from the HTTP headers or the HTML 

payload to decide whether and when to prefetch the links 

provided by the hints. It has a built-in prefetch engine that 

can detect whether the network is idle, and if so, it decides 

when to prefetch the resource. However, the idle time 

detection is based on Firefox’s own usage of the network. In 

other words, it does not know whether there is another 

program running on the same machine using the network. 

Furthermore, Firefox does not know whether there are other 

users in the same LAN using the shared network. 

Firefox also adds a custom HTTP request header (X-moz: 

prefetch) to tell a server that the incoming request is a 

prefetch request so that the server can distinguish prefetch 

requests from standard requests. 

The well-known search engine website Google uses a 

hint-based prefetching-enabled HTTP server. When Firefox 

is used to access Google search, prefetching happens in the 

background during the browser-perceived idle time. 

 
 
IV. CLASSIFICATIONS AND REVIEWS 
 

A large portion of the prefetching literature is based on 

building prediction models for prefetching. There are two 

main aspects used for building prediction models: Web 

content and Web history. 

Therefore, prefetching schemes can be broadly classified 

into content-based schemes and history-based schemes. 

Content-based schemes extract the top-ranked links on the 

basis of the content of the current page and the previously 

viewed pages. On the other hand, history-based schemes 

analyze the users’ previous actions, such as the sequence of 

the requested Web resources to determine the next likeliest 

resources to be requested.  

Content-based prefetching can be as simple as ranking 

keywords associated with links and prefetching the top-

ranked links. Advanced content-based prefetching may use a 

user’s interests learnt from his/her activities to aid the 

prefetching decisions. Chan [10] outlines a non-invasive 

 
Fig. 4. Dependency graph model. 

 

learning approach to estimate user interest in a page and 

build user profiles using factors such as the frequency of 

visitation, bookmarks, page reading time, and the 

percentage of child links that have been visited. 

If a hint-based infrastructure such as that of Mozilla is 

used, a server-side content-based prediction engine can 

auto-tag content with the appropriate link tags. Similarly, a 

client-side content-based prediction engine can simply mark 

the selected links as prefetchable, which then the prefetch 

engine can use when appropriate. 

History-based prefetching, on the other hand, constructs a 

prediction model using historical data. The model can be 

constructed using different characteristics of the historical 

data. The four most popular methods to construct the model 

are as follows: top ranked, dependency graph, Markov 

model, and data mining. 

Top ranked is a very simple history-based model. It sorts 

the resources of a website by a selected resource property 

and fetches the top N resources; here, N denotes a 

predefined threshold number, such as top 10. It does not 

take the current page into consideration. No matter which 

page/resource in the site was accessed first, the top N 

resources of the site will be prefetched. For instance, 

prefetch by popularity is based on the visit count of the Web 

links. 

Dependency graph prefetching is one of the first 

prefetching techniques. A dependency graph is a directed 

graph that represents the dependency relationships between 

several objects. It can be used for deriving an evaluation 

order. Usually, historical data are used for constructing a 

dependency graph model for prediction. However, such a 

model can also be constructed by analyzing Web content. 

This method can only look one step further, which means 

that it will only predict the next page rather than the next P 

pages on the basis of the current page. The main problem 

with this method is that its prediction accuracy is low. 
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Fig. 5. A Markov model. 

 

Fig. 4 shows an example of a history-based dependency 

graph. In this example, image1, image2, and popular.html 

depend on home.html. Fifty percent of the users will access 

image1 after accessing home.html. Fifty percent of the users 

will access image2 after accessing home.html. Twenty 

percent of the users will access popular.html after accessing 

home.html. If we use 50% as the threshold, image1 and 

image2 will be prefetched. Note that the sum of the 

percentages need not necessarily be 100%. The percentage 

for each page is calculated independently. A user who 

accesses home.html may access both image1 and image2. 

Markov model is a stochastic model based on Markov 

property. It represents the distribution of the future states 

based on the current states. A Markov model is constructed 

from historical data and can be used for prediction. In a 

Markov model, the order has a large impact on the 

predictive capability. Increasing the order increases the 

model complexity. Therefore, higher-order Markov models 

leave many states uncovered and become unmanageable. On 

the other hand, a low-order Markov model has a low 

accuracy. The third- and the fourth-order Markov models 

have the best balance between accuracy and complexity 

according to previous research [11]. 

Fig. 5 shows an example of the first-order Markov model. 

This example uses the current weather information to 

predict the next day’s weather. If the current day is sunny, 

there is an 80% probability that the next day will be sunny, 

15% probability that the next day will be foggy, and 5% 

probability that it will be rainy. The sum of the probabilities 

should always be equal to 1.  

Prediction by partial matching (PPM) is the common 

method used to build a Markov model. It is an algorithm 

widely used in data compression. PPM can also be used to 

cluster data into predicted groupings in cluster-based 

prefetching. For a large website containing millions of Web 

pages, a Markov model built with standard PPM will require 

large storage. Some proposals attempt to tune the PPM 

algorithm to avoid this overhead by restricting the servers to 

only collect access information for the most recent resources. 

However, this has the side-effect of a reduced hit rate due to 

the collection of a relatively less amount of historical 

information. Another variation of PPM, called longest 

repeating subsequences (LRS) PPM, only stores long 

branches with frequently accessed URL predictors. This 

consumes less storage and provides a relatively high 

prediction accuracy as compared to a standard PPM 

approach. However, the overall hit rate is still low because it 

ignores prefetching less-frequently accessed URLs. Chen 

and Zhang introduced a popularity-based PPM model using 

only the most popular URLs as root nodes; this model is 

shown to have good hit rates and requires less space [12]. 

Another approach to build the model is to use data mining 

techniques. Data mining is a computational process of 

discovering patterns in a large dataset. The overall purpose 

of data mining is to extract information from a dataset and 

transform it into an understandable structure. It involves six 

tasks: anomaly detection, association rule learning, clustering, 

classification, regression, and summarization. Association 

rule learning and clustering are the aspects that can be used 

for constructing a prediction model. Web logs are the main 

data from where useful knowledge can be extracted for Web 

prefetching. 

Association rule-based prefetching uses historical data to 

find relationships between resources. It does not consider 

the order of resources either within a transaction or across 

transactions. A typical example of this relationship is “A 

user who accesses the home page is 80% likely to also 

access the contacts page.” The model constructed using this 

relationship is very similar to a dependency graph. Further, 

other relationships can be found and used for constructing 

the model. For example, Yang et al. [13] used frequent 

access path patterns to extract association rules that 

improved both the hit rate and the byte hit rate dramatically. 

They first extracted the users’ request sequences from the 

Web logs and then, applied an algorithm to formulate the 

association rules. 

On the other hand, clustering-based prefetching clusters 

similar (according to some given criteria) resources in 

groups. Cluster analysis itself is not a specific algorithm but 

is a general task to be solved. Various algorithms can be 

applied to achieve this task. It depends on how the cluster is 

constituted and how efficient it is to find them. For example, 

users can be clustered into groups on the basis of their IP 

addresses. Association rule mining techniques can be used 

to cluster objects that may lead to having little separation 

between association rule-based prefetching and cluster-

based prefetching. The common clustering algorithms are 

connectivity-based, centroid-based, distribution-based, and 

density-based. 
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Most clustering methods target intra-site Web pages. 

Therefore, they do not perform well for grouping inter-site 

Web pages that belong to different sites. Pallis et al. [14] 

introduced a clustering algorithm called clustWeb, which is 

designed for inter-site Web pages. They also developed a 

clustering scheme called clustPref, which can be easily 

adapted to Web prefetching. 

 

 

V. SUMMARY AND CONCLUSION 
 

This paper introduces Web cache prefetching and 

discusses the motivation and challenges of prefetching. It 

goes on to discuss the metrics that measure the effectiveness 

of prefetching, and reviews some state-of-the-art techniques 

that deal with prefetching. It classifies prefetching techniques 

into content-based and history-based schemes. It further 

classifies history-based schemes into four main categories: 

top ranked, dependency graph, Markov model, and data 

mining. 

Top-ranked prefetching sorts the resources in a particular 

way and prefetches the top N resources. It may work well on 

some simple websites but is not very useful for most of the 

websites. Dependency graph is easy to implement but has a 

low accuracy. Markov models of the order of 3 or 4 have a 

better balance between accuracy and complexity than those 

of other orders. Data mining uses association rules and 

clustering to construct the models. It always ends with too 

many rules that are not useful.  
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