
 161

I. INTRODUCTION

Caches keep items of interest locally so that these items

can be used locally without having to fetch them from

remote sources. These items could be items used in the past

(temporal locality) or items that are spatially close to the

items used in the past (spatial locality). Caches are widely

used in many cases where the latency of obtaining remote

items is considerably larger than the local processing time. A

CPU cache is a good example of this. CPU caches exploit

both temporal and spatial localities in programs.

If the requested item is found in the local cache, it is

called a cache hit; otherwise, it is called a miss. An

associated metric is the cache hit rate, which is the

percentage of requests that hit in the cache. The cache hit

rate measures how well the cache is working.

After a cache miss, the requested item needs to be fetched

from the remote site because it is not there in the local cache.

Prefetching attempts to reduce such cache misses by

fetching in advance the items that are anticipated to be used

in the future.

Web caching relates to caching resources and responses

from a Web request. It focuses on reducing network latency

and conserving network bandwidth. A Web cache can be

deployed at the client, server, or any intermediaries in

between (such as proxies and gateways) [1-3]. All the

popular Web browsers cache applicable server responses so

that repeat requests can be served locally from the cache.

Unlike CPU caches, Web caches only use temporal

locality and cache objects that were accessed in the past.

Web prefetching overcomes the limitation of passive

caching by proactively retrieving the cache resources or

responses for future requests. This requires being able to

predict what those future requests will be. Resources and

responses for the predicted requests are prefetched and

placed in the cache anticipating a near-future use. Pre-

fetching is initiated when the network is deemed lightly

used. Once these prefetched resources are in the cache, the

Received 20 February 2014, Revised 10 March 2014, Accepted 26 May 2014
*Corresponding Author Sathiamoorthy Manoharan (E-mail: mano@cs.auckland.ac.nz)
Department of Computer Science, University of Auckland, Auckland, New Zealand.

 http://dx.doi.org/10.6109/jicce.2014.12.3.161 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/li­censes/by-

nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

J. lnf. Commun. Converg. Eng. 12(3): 161-167, Sep. 2014 Regular paper

A Review of Web Cache Prefetching

YuFeng Deng and Sathiamoorthy Manoharan
*
, Member, KIICE

Department of Computer Science, University of Auckland, Auckland, New Zealand

Abstract

Web caches help to reduce latencies arising from slow networks through storing and reusing what was used before. Repeat

access to a cached resource does not incur network latencies. However, resources that have never been used will not be found

in the cache. Cache prefetching is a technique that helps to fill a cache with still-unused resources in anticipation that these

resources will be used in the near future. Typically these unused resources are related to the resources that have been accessed

in the recent past. While web caching exploits temporal locality, prefetching attempts to exploit spatial locality. Access to the

prefetched resources will be cache hits, and therefore reduces the latency as perceived by the user. This paper reviews the

cache infrastructure supported by the hypertext transfer protocol and discusses web cache prefetching in general, including

Mozilla's prefetching infrastructure. It then classifies and reviews some prefetching techniques.

Index Terms: Prefetching, Web caching, Web server performance

Open Access

J. lnf. Commun. Converg. Eng. 12(3): 161-167, Sep. 2014

http://dx.doi.org/10.6109/jicce.2014.12.3.161 162

cache can serve them instantly on request.

Prefetching does not reduce the data exchange rate; rather,

it increases this rate as the prediction algorithms are not

100% accurate and will fetch some unnecessary resources.

Similarly, prefetching does not reduce the latency. However,

it reduces the user-perceived latency by exploiting the

network idle time to download the resources before the user

needs them.

Cho stated that prefetching is often more effective in

providing a better user experience than increasing the

bandwidth [4]. However, prefetching may not work well for

congested shared networks because others may be using the

network during your idle time [5].

II. GOALS OF PREFETCHING

The primary purpose of prefetching is to reduce the user-

perceived latency by caching the resources before the users

request them. In the ideal case, a user will use the same

resources (CPU, memory, bandwidth usage, etc.) as before

but remove all the wait time. In other words, a user gets the

online resources instantly as she requests them.

Exploiting spatial locality in the Web is a simple form of

prefetching; resources close to the resource currently being

consumed are fetched to the cache with the anticipation that

these will be used in the near future.

Here is an example of an ideal prefetching scenario where

spatial locality is exploited. A person is reading online a

100-page book in the HTML format. It takes him 1 minute

to finish reading a page. The browser takes 10 seconds to

download a new page. Without prefetching, this person will

need to wait for 10 seconds after clicking the next page

button, which leads to a total wait time of 1,000 seconds.

Suppose that the browser is smart enough to download the

next page when the person is reading the current page.

When the person clicks the next button, the browser gets the

content from its local cache and displays it. There is no wait

time at all. It still costs the browser 1,000 seconds to

download the 100 pages. However, this is time not seen by

the user; the user-perceived latency has been removed. This

is prefetching at its best.

In reality, the above example hardly happens. For

instance, the person may want to skip a chapter because she

is not interested in its content. There is no obvious and exact

way to know what someone wants in the near future.

Downloading all the links from the current page is not an

option. First, there is not enough time for the browser to

fetch everything. Modern Web pages contain a lot of links

that may point to large multimedia files (movies, music,

etc.). The browser will take considerably more time (than

the reading time, for example) to fetch all the links. Second,

downloading many resources from the Internet will use a

significant amount of bandwidth and cause network

congestion. Third, many browsers doing the same thing will

overload the server. For these reasons, downloading

everything in the current page will only increase the user-

perceived latency in most cases.

While the primary goal of prefetching is to reduce the

user-perceived latency, there are a number of secondary

goals that are often as important as the primary goal itself.

These secondary goals are as follows: 1) reducing network

bandwidth usage, 2) reducing the use of unnecessary local

storage, and 3) not increasing the server load.

The basic principle of prefetching is to attempt to satisfy

the primary goal as well as the secondary goals to a reasona-

ble extent. What actually is reasonable can be quantified

through metrics measuring the prefetching effectiveness.

A. Prefetching Effectiveness

Effectiveness of prefetching can, in part, be measured

using the metrics used for measuring the effectiveness of

Web caches. The two common metrics used for Web caches

are the hit rate and the byte hit rate. Hit rate is the

percentage of requests that hit in the cache. However, this

does not tell how much bandwidth or latency has been saved;

small files can be hits and large files can be misses. Rather

than counting just the requests, the byte hit rate is based on

counting the number of bytes of the hits. Cache hits for large

objects contribute more to the byte hit ratio than cache hits

for small objects. Therefore, the byte hit rate is a measure of

how much bandwidth is saved by caching and prefetching.

A prefetch-specific measure is the prefetch hit rate; the

percentage of the items that are actually used with respect to

the number of items that are prefetched. Just like the hit rate

above, this prefetch hit rate can further be focused upon by

considering the percentage of useful bytes to the total of the

prefetched bytes. This measure, the prefetch byte hit rate,

can help us quantify how suitable the local storage is used

for prefetching.

A conservative prefetching may fetch only those objects

that are highly likely to be used and thus result in a high

prefetch hit rate. However, this will lead to a low cache hit

rate. Therefore, the effectiveness of prefetching needs to be

measured by both hit rates.

III. PREFETCHING INFRASTRUCTURE

A large part of the prefetching infrastructure is based on

the Web caching infrastructure provided by the hypertext

transfer protocol (HTTP) [2]. To this end, this section

reviews both the Web caching infrastructure and the pre-

fetching infrastructure.

A Review of Web Cache Prefetching

http://jicce.org 163

A. HTTP Caching Infrastructure

HTTP caching is supported by the entities in the HTTP

request-response pipeline—browsers, caching proxies, and

gateways. Browser caches are normally private (per user),

while the other caches are public (or shared). Caching

proxies are usually located at the network edge close to the

end-user. They reduce the outgoing Web traffic, resulting in

a better response time for the user. Gateways are located at

the network edge close to the origin server. They reduce the

load on the server, particularly when dynamic Web contents

are involved. Prefetching can equally be employed at any or

a selection of these entities. Therefore, client-driven [5],

server-driven [6], proxy-driven [7], collaborative [8], and

multiple-entity [9] prefetching architectures have been

proposed in the literature. In collaborative prefetching

architectures, entities collaborate with each other in arriving

at prefetching decisions, while in multiple-entity prefetching

architectures, prefetching is carried out at multiple entities

independently.

HTTP’s caching infrastructure governs what is cacheable

and what is not. The response to a GET request is cacheable

by default, while the response to a POST request is not

cacheable by default. Cache control directives exist to

change the default behavior.

With cacheable entities, there are two primary indicators

to support caching: an expiry time and a validator. The

expiry time tells the caching entity how long the cached

resource could be served out of the cache without

revalidation from the origin server. Once the expiry time is

reached, the resource should be revalidated by the origin

server before use; if the cached copy is older than the server

copy, then a fresh copy must be obtained. The validator

helps with this. It is a unique hash value that represents the

instance of the resource, and when the resource changes in

any way, the hash would too. The cache keeps this server-

supplied validator with the cached resource, and when the

resource is deemed expired, the cache will conditionally

request the resource by using the validator. If the cached

validator is older than the server’s, then the server would

send a new copy of the resource; otherwise, the server

would simply indicate that the resource has not changed and

provide a new expiry time.

Prefetching must take into account the cacheability of a

resource. A non-cacheable resource should not be prefetched

as doing so will invalidate the intentions of the resource

owner. Similarly, if a resource is marked for private caching,

this resource can only be prefetched to a private (e.g.,

browser) cache and not to public caches (e.g., caching a

proxy or gateway).

Fig. 1. A hint-based prefetching infrastructure.

GET https://www.google.co.nz/search?sclient=psy-ab&...

Accept: */*
Referer: https://www.google.co.nz/?gfe_rd=cr...

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/5.0...
Host: www.google.co.nz

DNT: 1

Connection: Keep-Alive

Link:</images/big.jpeg>;rel=prefetch

Fig. 2. Prefetch hints in an HTTP request.

B. Mozilla’s Prefetching Infrastructure

Prefetching does two things: predict what is needed and

prefetch to cache it. These two tasks are managed by a

prediction engine and a prefetch engine, respectively. The

prediction engine decides what to prefetch, typically by

using intelligent prediction models. On the other hand, the

prefetching engine decides when and whether to prefetch. It

is usually integrated with a cache engine. The prefetch

enginemonitors and uses hardware and user data (e.g., CPU

utilization, bandwidth utilization, and user behavior) to

make the prefetching decision. Fig. 1 illustrates a

prefetching infrastructure based on a server-side prediction

engine supplying prefetching hints.

Mozilla proposed a prefetching infrastructure utilizing

such a prediction and prefetch engine architecture, as

depicted in Fig. 1. The infrastructure is based on hints: the

servers supply prefetching hints, and the clients use these

hints to prefetch resources if they can (e.g., have idle

network time for prefetching). The prediction engine should

ideally be located on the server side; however, Mozilla does

not allow such an implementation. The prefetch engine is

integrated into Firefox, Mozilla’s Internet browser. There

are two methods to specify the prefetch hints. The first

method adds a custom header called Link to the HTTP

headers with the value of the suggested links. Fig. 2 shows

the use of Link in an HTTP request.

Should I prefetch?

request

Ask for hints

Return hints

response with hints

Yes/No

Prediction Engine Prefetching Engine

J. lnf. Commun. Converg. Eng. 12(3): 161-167, Sep. 2014

http://dx.doi.org/10.6109/jicce.2014.12.3.161 164

<html>

 <head>
 <link rel="prefetch" href="/images/big.jpeg">

 </head>

 <body>
 Web content

 </body>

</html>

Fig. 3. Prefetch hints in an HTML document.

The second method is to include the suggested links in

the HTML body by using the HTML <link> tags (see Fig.

3). In the absence of a server-side prediction engine, these

hints can be manually specified for each resource. Firefox

reads the hints from the HTTP headers or the HTML

payload to decide whether and when to prefetch the links

provided by the hints. It has a built-in prefetch engine that

can detect whether the network is idle, and if so, it decides

when to prefetch the resource. However, the idle time

detection is based on Firefox’s own usage of the network. In

other words, it does not know whether there is another

program running on the same machine using the network.

Furthermore, Firefox does not know whether there are other

users in the same LAN using the shared network.

Firefox also adds a custom HTTP request header (X-moz:

prefetch) to tell a server that the incoming request is a

prefetch request so that the server can distinguish prefetch

requests from standard requests.

The well-known search engine website Google uses a

hint-based prefetching-enabled HTTP server. When Firefox

is used to access Google search, prefetching happens in the

background during the browser-perceived idle time.

IV. CLASSIFICATIONS AND REVIEWS

A large portion of the prefetching literature is based on

building prediction models for prefetching. There are two

main aspects used for building prediction models: Web

content and Web history.

Therefore, prefetching schemes can be broadly classified

into content-based schemes and history-based schemes.

Content-based schemes extract the top-ranked links on the

basis of the content of the current page and the previously

viewed pages. On the other hand, history-based schemes

analyze the users’ previous actions, such as the sequence of

the requested Web resources to determine the next likeliest

resources to be requested.

Content-based prefetching can be as simple as ranking

keywords associated with links and prefetching the top-

ranked links. Advanced content-based prefetching may use a

user’s interests learnt from his/her activities to aid the

prefetching decisions. Chan [10] outlines a non-invasive

Fig. 4. Dependency graph model.

learning approach to estimate user interest in a page and

build user profiles using factors such as the frequency of

visitation, bookmarks, page reading time, and the

percentage of child links that have been visited.

If a hint-based infrastructure such as that of Mozilla is

used, a server-side content-based prediction engine can

auto-tag content with the appropriate link tags. Similarly, a

client-side content-based prediction engine can simply mark

the selected links as prefetchable, which then the prefetch

engine can use when appropriate.

History-based prefetching, on the other hand, constructs a

prediction model using historical data. The model can be

constructed using different characteristics of the historical

data. The four most popular methods to construct the model

are as follows: top ranked, dependency graph, Markov

model, and data mining.

Top ranked is a very simple history-based model. It sorts

the resources of a website by a selected resource property

and fetches the top N resources; here, N denotes a

predefined threshold number, such as top 10. It does not

take the current page into consideration. No matter which

page/resource in the site was accessed first, the top N

resources of the site will be prefetched. For instance,

prefetch by popularity is based on the visit count of the Web

links.

Dependency graph prefetching is one of the first

prefetching techniques. A dependency graph is a directed

graph that represents the dependency relationships between

several objects. It can be used for deriving an evaluation

order. Usually, historical data are used for constructing a

dependency graph model for prediction. However, such a

model can also be constructed by analyzing Web content.

This method can only look one step further, which means

that it will only predict the next page rather than the next P

pages on the basis of the current page. The main problem

with this method is that its prediction accuracy is low.

A Review of Web Cache Prefetching

http://jicce.org 165

Fig. 5. A Markov model.

Fig. 4 shows an example of a history-based dependency

graph. In this example, image1, image2, and popular.html

depend on home.html. Fifty percent of the users will access

image1 after accessing home.html. Fifty percent of the users

will access image2 after accessing home.html. Twenty

percent of the users will access popular.html after accessing

home.html. If we use 50% as the threshold, image1 and

image2 will be prefetched. Note that the sum of the

percentages need not necessarily be 100%. The percentage

for each page is calculated independently. A user who

accesses home.html may access both image1 and image2.

Markov model is a stochastic model based on Markov

property. It represents the distribution of the future states

based on the current states. A Markov model is constructed

from historical data and can be used for prediction. In a

Markov model, the order has a large impact on the

predictive capability. Increasing the order increases the

model complexity. Therefore, higher-order Markov models

leave many states uncovered and become unmanageable. On

the other hand, a low-order Markov model has a low

accuracy. The third- and the fourth-order Markov models

have the best balance between accuracy and complexity

according to previous research [11].

Fig. 5 shows an example of the first-order Markov model.

This example uses the current weather information to

predict the next day’s weather. If the current day is sunny,

there is an 80% probability that the next day will be sunny,

15% probability that the next day will be foggy, and 5%

probability that it will be rainy. The sum of the probabilities

should always be equal to 1.

Prediction by partial matching (PPM) is the common

method used to build a Markov model. It is an algorithm

widely used in data compression. PPM can also be used to

cluster data into predicted groupings in cluster-based

prefetching. For a large website containing millions of Web

pages, a Markov model built with standard PPM will require

large storage. Some proposals attempt to tune the PPM

algorithm to avoid this overhead by restricting the servers to

only collect access information for the most recent resources.

However, this has the side-effect of a reduced hit rate due to

the collection of a relatively less amount of historical

information. Another variation of PPM, called longest

repeating subsequences (LRS) PPM, only stores long

branches with frequently accessed URL predictors. This

consumes less storage and provides a relatively high

prediction accuracy as compared to a standard PPM

approach. However, the overall hit rate is still low because it

ignores prefetching less-frequently accessed URLs. Chen

and Zhang introduced a popularity-based PPM model using

only the most popular URLs as root nodes; this model is

shown to have good hit rates and requires less space [12].

Another approach to build the model is to use data mining

techniques. Data mining is a computational process of

discovering patterns in a large dataset. The overall purpose

of data mining is to extract information from a dataset and

transform it into an understandable structure. It involves six

tasks: anomaly detection, association rule learning, clustering,

classification, regression, and summarization. Association

rule learning and clustering are the aspects that can be used

for constructing a prediction model. Web logs are the main

data from where useful knowledge can be extracted for Web

prefetching.

Association rule-based prefetching uses historical data to

find relationships between resources. It does not consider

the order of resources either within a transaction or across

transactions. A typical example of this relationship is “A

user who accesses the home page is 80% likely to also

access the contacts page.” The model constructed using this

relationship is very similar to a dependency graph. Further,

other relationships can be found and used for constructing

the model. For example, Yang et al. [13] used frequent

access path patterns to extract association rules that

improved both the hit rate and the byte hit rate dramatically.

They first extracted the users’ request sequences from the

Web logs and then, applied an algorithm to formulate the

association rules.

On the other hand, clustering-based prefetching clusters

similar (according to some given criteria) resources in

groups. Cluster analysis itself is not a specific algorithm but

is a general task to be solved. Various algorithms can be

applied to achieve this task. It depends on how the cluster is

constituted and how efficient it is to find them. For example,

users can be clustered into groups on the basis of their IP

addresses. Association rule mining techniques can be used

to cluster objects that may lead to having little separation

between association rule-based prefetching and cluster-

based prefetching. The common clustering algorithms are

connectivity-based, centroid-based, distribution-based, and

density-based.

J. lnf. Commun. Converg. Eng. 12(3): 161-167, Sep. 2014

http://dx.doi.org/10.6109/jicce.2014.12.3.161 166

Most clustering methods target intra-site Web pages.

Therefore, they do not perform well for grouping inter-site

Web pages that belong to different sites. Pallis et al. [14]

introduced a clustering algorithm called clustWeb, which is

designed for inter-site Web pages. They also developed a

clustering scheme called clustPref, which can be easily

adapted to Web prefetching.

V. SUMMARY AND CONCLUSION

This paper introduces Web cache prefetching and

discusses the motivation and challenges of prefetching. It

goes on to discuss the metrics that measure the effectiveness

of prefetching, and reviews some state-of-the-art techniques

that deal with prefetching. It classifies prefetching techniques

into content-based and history-based schemes. It further

classifies history-based schemes into four main categories:

top ranked, dependency graph, Markov model, and data

mining.

Top-ranked prefetching sorts the resources in a particular

way and prefetches the top N resources. It may work well on

some simple websites but is not very useful for most of the

websites. Dependency graph is easy to implement but has a

low accuracy. Markov models of the order of 3 or 4 have a

better balance between accuracy and complexity than those

of other orders. Data mining uses association rules and

clustering to construct the models. It always ends with too

many rules that are not useful.

REFERENCES

[1] H. Liu and M. Chen, “Evaluation of Web caching consistency,” in

Proceedings of the 3rd International Conference on Advanced

Computer Theory and Engineering (ICACTE), Chengdu, China,

pp. 130-132, 2010.

[2] D. Wessels, Web Caching. Sebastopol, CA: O'Reilly & Associates,

2001.

[3] M. Rabinovich and O. Spatscheck, Web Caching and Replication.

Boston, MA: Addison-Wesley, 2002.

[4] G. Cho, “Using predictive prefetching to improve location

awareness of mobile information service,” in Computational

Science, Lecture Notes in Computer Science, vol. 2331, pp. 1128-

1136, 2002.

[5] A. Balamash, M. Krunz, and P. Nain, “Performance analysis of a

client-side caching/prefetching system for Web traffic,” Computer

Networks, vol. 51, no. 13, pp. 3673-3692, 2007.

[6] J. Domenech, J. A. Gil, J. Sahuquillo, and A. Pont, “DDG: an

efficient prefetching algorithm for current web generation,” in

Proceedings of the 1st IEEE Workshop on Hot Topics in Web

Systems and Technologies (HOTWEB), Boston, MA, pp. 1-12,

2006.

[7] L. Fan, P. Cao, W. Lin, and Q. Jacobson, “Web prefetching

between low-bandwidth clients and proxies: Potential and perfo-

rmance,” in Proceedings of the ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer Systems,

Atlanta, GA, pp. 178-187, 1999.

[8] X. Chen and X. Zhang, “Coordinated data prefetching by utilizing

reference information at both proxy and web servers,” ACM

SIGMETRICS Performance Evaluation Review, vol. 29, no. 2, pp.

32-38, 2001.

[9] E. P. Markatos and C. E. Chronaki, “A top-10 approach to

prefetching on the web,” in Proceedings of INET, pp. 276-290,

1998.

[10] P. K. Chan, A non-invasive learning approach to building web user

profiles [Internet], http://citeseerx.ist.psu.edu/ viewdoc/summary?

doi=10.1.1.35.2866.

[11] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and

K. J. Worrell, “A hierarchical internet object cache,” Department

of Computer Science, Colorado University at Boulder, Report no.

CU-CS-766-95, 1995.

[12] X. Chen and X. Zhang, “A popularity-based prediction model for

web prefetching,” Computer, vol. 36, no. 3, pp. 63-70, 2003.

[13] Q. Yang, H. H. Zhang, and T. Li, “Mining web logs for prediction

models in WWW caching and prefetching,” in Proceedings of the

7th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, San Francisco, CA, pp. 473-478, 2001.

[14] G. Pallis, A. Vakali, and J. Pokorny, “A clustering-based pre-

fetching scheme on a Web cache environment,” Computers &

Electrical Engineering, vol. 34, no. 4, pp. 309-323, 2008.

is a Ph.D. candidate at the Department of Computer Science, University of Auckland. He holds a Bachelor of
Technology (Hons) in Information Technology from the same University.

A Review of Web Cache Prefetching

http://jicce.org 167

is a senior lecturer at the Department of Computer Science, University of Auckland. He holds a Bachelor of
Technology (Hons) in Electronics and Electrical Communication Engineering from the Indian Institute of
Technology, Kharagpur, India. He has a Ph.D. in Computer Science from the University of Edinburgh, Scotland.

