• Title/Summary/Keyword: In-memory file system

Search Result 240, Processing Time 0.032 seconds

EAST: An Efficient and Advanced Space-management Technique for Flash Memory using Reallocation Blocks (재할당 블록을 이용한 플래시 메모리를 위한 효율적인 공간 관리 기법)

  • Kwon, Se-Jin;Chung, Tae-Sun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.476-487
    • /
    • 2007
  • Flash memory offers attractive features, such as non-volatile, shock resistance, fast access, and low power consumption for data storage. However, it has one main drawback of requiring an erase before updating the contents. Furthermore, flash memory can only be erased limited number of times. To overcome limitations, flash memory needs a software layer called flash translation layer (FTL). The basic function of FTL is to translate the logical address from the file system like file allocation table (FAT) to the physical address in flash memory. In this paper, a new FTL algorithm called an efficient and advanced space-management technique (EAST) is proposed. EAST improves the performance by optimizing the number of log blocks, by applying the state transition, and by using reallocation blocks. The results of experiments show that EAST outperforms FAST, which is an enhanced log block scheme, particularly when the usage of flash memory is not full.

Caching and Prefetching Policies Using Program Page Reference Patterns on a File System Layer for NAND Flash Memory (NAND 플래시 메모리용 파일 시스템 계층에서 프로그램의 페이지 참조 패턴을 고려한 캐싱 및 선반입 정책)

  • Park, Sang-Oh;Kim, Kyung-San;Kim, Sung-Jo
    • The KIPS Transactions:PartA
    • /
    • v.14A no.4
    • /
    • pp.235-244
    • /
    • 2007
  • Caching and prefetching policies have been used in most of computer systems to compensate speed differences between primary memory and secondary storage devices. In this paper, we design and implement a Flash Cache Core Module(FCCM) on the YAFFS which operates on a file system layer for NAND flash memory. The FCCM is independent of the underlying kernel in order to support its stability and compatibility. Also, we implement the Dirty-Last memory replacement technique considering the characteristics of flash memory, and the waiting queue for pages to be prefetched according to page hit. The FCCM reduced the number of I/Os and the amount of prefetched pages by maximum 55%(20% on average) and maximum 55%(24% on average), respectively, comparing with caching and prefetching policies of Linux.

Design and Implementation of MODA Allocation Scheme based on Analysis of Block Cleaning Cost (블록 클리닝 비용 분석에 기초한 MODA할당 정책 설계 및 구현)

  • Baek, Seung-Jae;Choi, Jong-Moo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.11
    • /
    • pp.599-609
    • /
    • 2007
  • Due to the restrictions of Flash memory such as overwrite limitation and write/erase operational unit differences, block cleaning is required in Flash memory based file systems and known as a key factor on the performance of file systems. In this paper, we identify three parameters, namely utilization, invalidity and uniformity, and analyze how the parameters affect the cost of block cleaning. The analysis show that as uniformity degrades, the cost of block cleaning increases drastically. To overcome this problem, we design a new modification-aware(MODA) page allocation scheme that strives to keep uniformity high by separating frequently-updating data from infrequently-updating data. Real implementation experiments conducted on an embedded system show that the MODA scheme can actually enhance uniformity of Flash memory, which consequently leads to reduce the cost of block cleaning with an average of 123%, compared to the traditional sequential allocation scheme that is used in YAFFS.

An Improved Index Structure for the Flash Memory Based F2FS File System

  • Kim, Yong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.1-8
    • /
    • 2022
  • As an efficient file system for SSD(Solid State Drive), F2FS is employed in the kernel of Linux operating system. F2FS applies various methods to improve performance by reflecting the characteristics of flash memory. One of them is improvement of the index structure that contains addresses of data blocks for each file. This paper presents a method for further improving performance by modifying the index structure of F2FS. F2FS manages all index blocks as logical numbers, and an address mapping table is used to find the physical block addresses of index blocks on flash memory. This paper shows performance improvement by applying logical numbers to the last level index blocks only. The count of mapping table search for a data block access is reduced to 1~2 from 1~4.

The Design and Implementation of a Cleaning Algorithm using NAND-Type Flash Memory (NAND-플래시 메모리를 이용한 클리닝 알고리즘의 구현 및 설계)

  • Koo, Yong-Wan;Han, Dae-Man
    • Journal of Internet Computing and Services
    • /
    • v.7 no.6
    • /
    • pp.105-112
    • /
    • 2006
  • This paper be composed to file system by making a new i_node structure which can decrease Write frequency because this's can improved the file system efficiency if reduced Write operation frequency of flash memory in respect of file system, i-node is designed to realize Cleaning policy of data in order to perform Write operation. This paper suggest Cleaning Algorithm for Write operation through a new i_node structure. In addition, this paper have mode the oldest data cleaned and the most recent data maintained longest as a result of experiment that the recent applied program and data tend to be implemented again through the concept of regional and time space which appears automatically when applied program is implemented. Through experiment and realization of the Flash file system, this paper proved the efficiency of NAND-type flash file system which is required in on Embedded system.

  • PDF

Improving the Reliability and Performance of the YAFFS Flash File System (YAFFS 플래시 파일시스템의 성능과 안정성 향상)

  • Son, Ik-Joon;Kim, Yu-Mi;Baek, Seung-Jae;Choi, Jong-Moo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.9
    • /
    • pp.898-903
    • /
    • 2010
  • Popularity of smartphones such as Google Android phones and Apple iphones, is increasing the demand on more reliable high performance file system for flash memory. In this paper, we propose two techniques to improve the performance of YAFFS (Yet Another Flash File System), while enhancing the reliability of the system. Specifically, we first propose to manage metadata and user data separately on segregated blocks and indexing information piggy-back technique for reducing mount time and also enhancing performance. Second, we tailor the wear-leveling to the segregated metadata and user data blocks. Performance evaluation results based on real hardware system with 1GB NAND flash memory show that the YAFFS with our proposed techniques realized outperforms the original YAFFS by six times in terms of mount speed and five times in terms of benchmark performance, while reducing the average erase count of blocks by 14%.

Maximum Stack Memory Usage Estimation Through Target Binary File Analysis in Microcontroller Environment (마이크로컨트롤러 환경에서 타깃 바이너리 파일 분석을 통한 최대 스택 메모리 사용량 예측 기법)

  • Choi, Kiho;Kim, Seongseop;Park, Daejin;Cho, Jeonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.3
    • /
    • pp.159-167
    • /
    • 2017
  • Software safety is a key issue in embedded system of automotive and aviation industries. Various software testing approaches have been proposed to achieve software safety like ISO26262 Part 6 in automotive environment. In spite of one of the classic and basic approaches, stack memory is hard to estimating exactly because of uncertainty of target code generated by compiler and complex nested interrupt. In this paper, we propose an approach of analyzing the maximum stack usage statically from target binary code rather than the source code that also allows nested interrupts for determining the exact stack memory size. In our approach, determining maximum stack usage is divided into three steps: data extraction from ELF file, construction of call graph, and consideration of nested interrupt configurations for determining required stack size from the ISR (Interrupt Service Routine). Experimental results of the estimation of the maximum stack usage shows proposed approach is helpful for optimizing stack memory size and checking the stability of the program in the embedded system that especially supports nested interrupts.

Design and Implementation of the Java Card API for Efficient File Management (효율적 파일 관리를 위한 자바카드 API 설계 및 구현)

  • Song Young-Sang;Shin In-Chul
    • The KIPS Transactions:PartC
    • /
    • v.13C no.3 s.106
    • /
    • pp.275-282
    • /
    • 2006
  • There are several independent applets to support various applications in a Java Card. Each applet in a Java Card processes and manages its own data without concern to other applets and their data. In this paper we proposed file system API to support efficient file management based on Java Card. Also we designed and implemented Java Card based file system API using basic API and referring to the file system standard defined in ISO 7816-4 Smart Card standard. By using proposed file system API, we can replace duplications of same code in each applet with short method call. So the used memory space and processing time is reduced and also the reduction of development time and cost will be expected.

Application Performance Evaluation in Main Memory Database System (메인메모리 데이터베이스시스템에서의 어플리케이션 성능 평가)

  • Kim, Hee-Wan;Ahn, Yeon S.
    • Journal of Digital Contents Society
    • /
    • v.15 no.5
    • /
    • pp.631-642
    • /
    • 2014
  • The main memory DBMS is operated which the contents of the table that resides on a disk at the same time as the drive is in the memory. However, because the main memory DBMS stores the data and transaction log file using the disk file system, there are a limit to the speed at which the CPU accesses the memory. In this paper, I evaluated the performance through analysis of the application side difference the technology that has been implemented in Altibase system of main memory DBMS and Sybase of disk-based DBMS. When the application performance of main memory DBMS is in comparison with the disk-based DBMS, the performance of main memory DBMS was outperformed 1.24~3.36 times in the single soccer game, and was outperformed 1.29~7.9 times in the soccer game / special soccer. The result of sale transaction response time showed a fast response time of 1.78 ~ 6.09 times.

A Study of Purity-based Page Allocation Scheme for Flash Memory File Systems (플래시 메모리 파일 시스템을 위한 순수도 기반 페이지 할당 기법에 대한 연구)

  • Baek, Seung-Jae;Choi, Jong-Moo
    • The KIPS Transactions:PartA
    • /
    • v.13A no.5 s.102
    • /
    • pp.387-398
    • /
    • 2006
  • In this paper, we propose a new page allocation scheme for flash memory file system. The proposed scheme allocates pages by exploiting the concept of Purity, which is defined as the fraction of blocks where valid Pages and invalid Pages are coexisted. The Pity determines the cost of block cleaning, that is, the portion of pages to be copied and blocks to be erased for block cleaning. To enhance the purity, the scheme classifies hot-modified data and cold-modified data and allocates them into different blocks. The hot/cold classification is based on both static properties such as attribute of data and dynamic properties such as the frequency of modifications. We have implemented the proposed scheme in YAFFS and evaluated its performance on the embedded board equipped with 400MHz XScale CPU, 64MB SDRAM, and 64MB NAND flash memory. Performance measurements have shown that the proposed scheme can reduce block cleaning time by up to 15.4 seconds with an average of 7.8 seconds compared to the typical YAFFS. Also, the enhancement becomes bigger as the utilization of flash memory increases.