NAND-ZA] w|RaE o]&3)
el delEe] 73 ¢ Al

The Design and Implementation of a Cleaning Algorithm
using NAND-Type Flash Memory

T8 3o v
Yongwan Koo Daeman Han
2 %

B =FAE NAND Zeje] ZdA] dEe g o] &3lo A8 AT AsAl7lE 2 diks ZAAA FYPALE
AR £ e ZYA HE2E A8 AALHE A Y AaY ZHAA ZHA WEElY 2] At AeE T
2A)7M YA AHY ASE Y AD £ glong, 27 35E 74AAL & YEE 2L inode +EE AT
By Al 2" 743

NEA TR inode F2E &3t Aty A4 $18 Cleaning €12 EFE £ FollA A3t} 31, Cleanng € dlo|
He ¢4 Z2ay 43 A 3930z sk N9Ftds AlZEztEe gl o3l 2o A" 88 =29
3} dolelr}t oA Ad JfeAo] L A¥Asd uely 29 dolgE g cfAE Y edE dHelEt
Cleanng SI=2 A7 9tk 48 3 ZA Fd A28 7L F3ko Jucls A2HolA 273= NAND 8 E&A]
0 AlAHe §8A1S FHEThH

Abstract

This paper be composed to file system by making a new i_node sfructure which can decrease Wiite frequency because this's
can improved the file system efficiency if reduced Wiite operation frequency of flash memory in respect of file system. i_node is
designed to redlize Cleaning policy of data in order to perform Wite operation.

This paper suggests Cleaning Algorithm for Wiite operation through a new i_node sfructure. In addifion, this paper have made
the oldest data cleaned and the most recent data maintcined longest s a result of experiment that the recent applied
program and dafa tend fo be implemented again through the concept of regional and fime space which appears automatically
when applied program is implemented. Through experiment and redlization of the Flash file system, this paper proved the
efficiency of NAND-type flosh file system which is required in an Embedded system

= Keyword : Fash, File System , Embedded

1. Introduction are at higher demand as mobile services are

expanding. PDA and wireless internet devices
Recently more efficient embedded systems as examples of embedded systems use flash

memories as nonvolatile data managements, for

* FASL: FANSE s 3, AFEES a5
ywkoo@suwon.ac.kr

w* g 3] & FANE 2P Jfus
han38 @hanmail net

[2006/07/25 F-31 - 2006/09/18 AJA} - 2006/11/20 HALES]

they consume reasonably little power.
Besides, flash memories have greater density
rate than non volatile RAM, supports system

rok

= Qe HEEE (T 635)

105

NAND-E2A| sl 22| & 0|83

level R/W with low power consumption and
fast speed, and moreover show high durability
against temperature and crashes. Different
manufacturers used different technologies to
produce flash memories and consequently the
performances vary in the R/W speed and the
sizes of pages and blocks.

Adoption of flash memories as a storage de-
vice in a system requires several considerations
to take into the system design. Writing data in-
to flash memories would be preceded by the
deletion operations that take longer time and
take place in bulks.

The methods to overcome the problems in
designing flash memories are divided into two
categories.

Flash memories are a kind of EEPROM
(Electrically Erasable Programmable ROM).
One of the categories neither isNOR type that
supports byte IfO and NAND type that sup-
ports page IfO only. For NOR type is fast in
reading but slow in writing, they are used for
storing codes. NAND type is used to store
large data, for they are fast in writing and
cheaper per unit data [3]. Writing onto flash
memories, however, should be preceded by de-
letion operations the unit of which is greater
than that of writing operations.

Such behaviors of flash memories would
make it less unlikely to use them as main
memories and make it hard to impbrt the file
systems designed for hard disks even when
they are to be used as secondary memories.

To hide the deletion operations a middle-
ware (flash translation layer; FTL) between
flash memories and file systems is often used
[4, 5]. Upon the execution of writing oper-
ations, the FTL plays a role of translating the

logical addresses generated by the file systems
into the physical addresses in which deletion
operations already took place in the flash
memories. For a fast address translation, the
translation table uses high performance cheap,
SRAM.

Network file systems are designed so that
hosts can use different file systems such as
FAT by using FTL, then flash memory file
systems can be made to work on real time
databases. Except for being used to work on
real time databases, flash memories are used
mostly as secondary memories. Without using
FTL, the performances of flash memories can
be improved by using a file system such as
Log-structure File System (LFS) [8, 9]. As a
way to design a file system for flash memo-
ries, an exclusive flash file system may be
deployed. An exclusive file system can make it
easier to realize an efficient system without ex-
tra hardware.

2. Related Works

2.1. Yaffs (Yet another Flash File Sys-
tem)

One of the reasons that embedded systems
are often based on LINUX is that the devel-
opers can choose the files systems of their
own interest. Most NOR type file systems use
MTD and JFFS systems, but some report JFES
file systems are unreliable at times. In partic-
ular large size operations cause severe writing
speed deterioration as memory occupation dra-
matically increases. Consequently application
programmers are required of using limited

resources.

106

2006. 12.

NAND-Z244| H&2|E 0[&

Y gmalzel P L A

Yaffs file systems overcomes the problems
of JFFS that the memory utilization rate is
lower than that of JFFS2, the improved system
mounting speed is proved. Working on Yaffs,
the goal of this paper is to design a file sys-
tem that reduces the shortcomings of NAND
flash memories instead of increasing the uti-

lization rate.

2.2. Design of Swap-Yaffs File System

As is pointed out earlier, JFFS2 systems are
unreliable as the size becomes large. To deal
with such problems, Yaffs file systems are ap-
pliedon MTD, and the Yaffs file system is de-
signed using the logic based on FTL. One can
refer to the manuals provided by the vendors
of MTD with regard to the installation of
MTD.

This paper suggests a method to minimize
the search area of NAND flash by searching
Swap areas in advance where conventionally
execution files are searched in application
areas in FTL by designating Swap area in
64M byte NAND flash memory.

SWAP-IN File Transtation |
SWAPT OuT Layer

Swap Area (yaffs }

BASE : Ox40000

MAX Size : rest

Application Area (yatfs)
BASE + Ox40000
MAX Size : rest

Compressed Ramdisk Area
BASE : Ox1000Q0
MAX Size : 3 MByte

NAND-Flash
64 MByte

Compressed Kemel Area
BASE @ Ox000000
MAX Size : 1 MByte

SDRAM 64 MByte

(Figure 1) shows the structure of flash
memory with swap partition.

The time to access the application area of
NAND flash memories is minimized when the
write operation is taking place. Write oper-
ations taking much access time would affect
the system, so the swap area is allocated just
for read operations to minimize the write
operations. Such a scheme is based on the
spatial locality of codes stored adjacently in
the memory, and adjacent NAND memory
areas are placed into the swap area that the
time for write operations to search application
codes sequentially from the beginning to copy
to main memory would be minimized.

Swap area can be searched only through
read operations. The efficiency of read oper-
ations in flash memories is comparable to that
of main memory operations.

As figure 2 illustrates, the system by this pa-
per uses NAND flash memory of 64Mbytes, and
at booting time the kernel block in NAND flash
memory is copied to SDRAM to be executed by
the NAND flash controller of MCU (memory
control unit). Only part of the programs in the
application area of NAND flash are copied to
SDRAM and executed. JFFS or JFFS2 supports
NAND type and NOR type flash memories and
show booting performances at 25 sec on
average. They also require 4 Mbytes of SDRAM
when the file system is to be run on SDRAM.

Yaffs file systems support only NAND type
flash memoriesand requires SDRAM of 512
Kbytes. The average booting time is about 3
seconds, thus Yaffs has advantages in space

and time efficiencies.

3. Design of Cleaning Algorithm

Flash memory can be divided into two:

31 oIl BEsl (72 63)

107

NAND-ZeiA| tjZ2lE 0|85 Za2id ¢12|Fe 78 ¥ 4A
. e——
EZ Boot Working Area
BASE : OXA100 0000
) MAX Size : rest
g’ OxA100 0000
] EZ Boot Stack Area
BASE : OxAQF2 0000
Application Area (yaffs } = | MAXSize: 1M Byte
BASE @ Ox40000 = OxAOF2 0000
£ MAX Size : rest EZ Boot Area
[=] BASE : OxAOF0 0000
8 o w MAX Size : 128 KByte
L}- % Compressed Ramdisk Area OxAOF0 0000
[a) BASE : Ox100000 Compress Ramdisk Area
2 = | MAXSize: 3 MByte BASE : OxA080 0000
< < MAX Size : 7MByte
< ® | Compressed Kemel Area OxA080 0000
BASE © Ox000000 Compress Kernel Area
MAX Size : 1 MByte BASE : OxA000 8000
MAX Size : BMByte
OxA000 8000
Kernel Boot Param Area
BASE : OxAD0O 0100
MAX Size : OxA000 0100
OxA000 0000

(Figure 2) The memory structure of EZ-xb

NOR-type and NAND-type. The former is de-
veloped as code storage such as ROM BIOS
because it supports fast reading speed and Byte
I/O. The latter is cheaper than the former and
is widely used in large capacity processing of
the Embedded linux system. However, in or-
der for Flash memory to use data, Erase oper-
ation which both needs comparatively long
processing time and is performed by block
units is an essential prerequisite. Using Flash
file system is one of the methods to overcome
this obstacle and consist of storage device.

By using NAND-type Flash memory, this
paper designed Flash memory file system
which can guarantee processing time by de-
creasing Erase operation that results in deterio-
rating the system function.

This paper be composed to file system by
making a new i_node structure which can de-
crease Write frequency because this’s can im-
proved the file system efficiency if reduced
Write operation frequency of flash memory in
respect of file system. i_node is designed to
realize Cleaning policy of data in order to per-

form Write operation.This i_node used the cur-
rent i_node structure to register Yaffs flash file
system to VFS. i-node structure of a new file
system composes a new structure in order to
maintain Flash memory information which per-
forms block size, Write capacity, and Erase
operation in a new i_node in order to check
when Write operation is performed to relocate
data which needs Cleaning.

Sot Time-aut
tssue Write 1o Buffer
Command st
Black Addrass set
Yes
Road Status Register o Weits 1o
Buffer Time ot 7

No
vaid = Yue?

Yes

Wit D12 to Bulfer
Count = Nurmbar of Brock

1F Abon Witte lo
Bufler 7

Yes

(Figure 2) Cleaning Flow chat

108

2006. 12.

NAND-Z24A| tj22|E o/

o gmelEel 78 @ A

=

e

This paper suggests Cleaning algorithm for
Write operation through a mnew i_node
structure. In addition, this paper have made the
oldest data cleaned and the most recent data
maintained longest as a result of experiment
that the recent applied program and data tend
to be implemented again through the concept
of regional and time space which appears auto-
matically when applied program is imple-
mented. Through experiment and realization of
the Flash file system,

4. Performance Analysis and Ev-
aluation

In this chapter, considerations needed to de-
sign systems using NAND flash memories are
examined.

Upon initial booting, the NAND flash mem-
ory controller copies the first block of NAND
flash memory to the RAM inside and execute
the codes.

The Ez-XS5S board used in our experiments
has the same hardware structure as is shown in
figure 2. The program copied into the RAM
copies the kernel stored in NAND flash memo-
ry to DRAM and lets the kemel take lead.
During the execution, the kernel remains in
RAM being ready for execution, but the appli-

cation codes are not all copied into the RAM.
The hardware specification in our setting is
shown in table 1.

The goal of experiments is to compare the
performances between JFFS and JFFS2 and to
measure execution time of Yaffs system and
improved Yaffs system depending on the vary-
ing Swap sizes.

Because the size control of SDRAM is not
what we can do at laboratory virtual size is in-
troduced, and Swap algorithm provided by
Linux file systems is used since Flash memory
systems do not have swap utilities.

(Table 1) Hardware specification

H/W Units

MCU | 400 MHz PXA255 ARM RISC Chip | ARMIO
RAM 6AMbyte SDRAM

ROMIL 512 Kbyte Boot Flash

ROM2 64Mbyte NAND-Flash

Figures 3~6 display evaluations among Yaffs
file system using Swap partitions, pure Yaffs
file system, JFFS, and JFFS2.

In particular, Swap sizes 128Kbyes and
512Kbyes did not lead to performance im-
provements as SDRAM size increases. This
may be that the swap size required by applica-
tions was not big. On the contrary, when the

g 8

8

Execution Time(msec)

o &

1000 2000 2000 4000 5000 6000
SDRAM size

88
_
P ove
R
3

Execution time(msec)

——JFFS

—I B JFFS2
|
I

»
g

H

e EXT-YAFFS

g

H

o 8

100 2000 3000 400 S0 B000
SDRAM size

(Figure 3) Swap Size 256KByte

(Figure 4) Swap Size 512KByte

= QB HEsE| (7R 63)

109

NAND-EZA| o 22| E ol

180 ——JFFS 180 —— JFFS
< 160 o rrse < 160 —B— JFFS2
g 140 \ YAFFS guop o YAFFS
£ - EXT-YAFFS £ ¥ EXT-YAFFS
£ 10 £ 100
pally: @ e . T & o Th—— e,

S & - S & e
g g wor
ﬁ m m 20 b
o . R N o . .
000 2000 00 4000 000 6000 1000 2000 3000 4000 5000 6000
SDRAM size SDRAM size
(Figure 5) Swap Size 1MByte (Figure 6> Swap Size 2MByte

30 ——JFFS 0 —-FS
g0 B SS2 30 -
2 YAFFS 2 WES
\gzn - Swap-YAFFS \GEJ’EDO 36— San0-YATFS
E - Sw
c ‘\ c
© 100 T . S 100
5 Py 7 W —— = .

2 0 3w .
e x
& 4 . R R 5 o .
1000 00 00 4000 500 6000 1000 2000 000 4000 5000 6000
SDRAM size SCRAM size

(Figure 7> Application of small memory occ-
upations

swap size is set to 1Mbytes and 2Mbytes, the
performance gains were evident regardless of
the files systems used. As SDRAM size in-
creases, all the file systems showed similar
performances. |

When the swap partition is set to 256Kbytes
and 512Kbytes, only Swap-Yaffs file system
can obtain performance upgrade with SDRAM
size less than 2Kbytes.

The test results signify that using swap file
system can only be beneficial when the memo-
ry requirement is sufficiently high. Thus, it is
thought that using Swap partition is recom-
mended only when sufficient dynamic memory
is to be used.

When multiple application programs are run-
ning, using swap partition can be disadvan-
tageous. Figures 7~10 show the test results of
applying swap partition to all the file systems.
As figure 7 shows, when tested with applica-

(Figure 8> Application of large memory occ-

upations

tions of small memory occupations JFFS2 and
Swap-Yaffs file systems demonstrated efficient
performances.

Figure 8 shows the case of running applica-
tions with higher memory demands. With high
memory tequests JFFS2 outperformed with
SDRAM of 1K byes and Swap-Yaffs followed.

The goal of JFFS2 file system is mainly to
achieve memory efficiency, and thus according
to our experiments, the file system turned out
to be better than Swap-Yaffs system in terms
of memory efficiency. Swap-Yaffs file system,
however, claims system reliability factor.

For the next experiment, Swap partition is
set in flash memory for dynamic memory to
be allocated in the swap area. The system
overhead is caused when the requested data is

‘not resident in SDRAM and Swap partition.

The overhead can be measured by observing
the page faults with varying swap sizes. Once

110

2006. 12.

NAND-Z2{Al o2l 0|8

gald guelEel 73 3 M

00— -
@ v

e

3 BEZS

2 ! | B Swap-Yaffs
g aors

K] + (OJFFS2

£

K 51K ™ M
Swap Size

(Figure 9) Swap off

after swap partition is set up, the page faults
are observed when the swap algorithm is used
or not used with varying swap sizes. Swap
partition sizes and SDRAM sizes are main-
tained as before.

Figure 9 shows the case without using swap
algorithm, and figure 10 shows another case of
using swap algorithm. As shown in figure 10,
Swap-Yaffs system led to less page faults than
JFES file system but fails to improve over
Yaffs system. JFFS2 system demonstrates clear
improvements. Figure 10 is a result of apply-
ing Swap-algorithm to all the systems, and
Swap-Yaffssystem succeeds to reduce page
faults at the Swap size of 256Kbytes and
shows similar outcomes to those by JFFS2.
Consequently Swap-Yaffs system maintains. the
merit of reliability inherent of Yaffs system,
allows fast initial booting, and achieves effi-
cient memory management comparable to that
of JFFS2.

5. Conclusion and Future Study

The goal of this paper is to design a flash
file system that can compromise merits and de-
merits of previous systems. By adding Swap

B Yaffs

M Swap-Yaffs
DS
aJs2

{Figure 10> Swap on

functions to Yaffs file system, we could wit-
ness speed gains for the applications that use
flash memories where memory management
might not be better than JFFS2.

We made use of the fact that sequential
search in NAND type flash memories is faster
than other memories. More tests can be made
upon the factors including the sizes of applica-
tions and extra memory requirements not used

for program executions.

Reference

[1] AMD, Flash Memory Technical Docu-
mentation. http://www.amd.com/us-en/ Flash
Memory/Tech.nicalResources, August 2001

[2] D. Woodhouse, “JFFS: The Journaling
Flash File System,” Ottawa Linux Sym-
posium(http://sources.redhat.com/jffs2/),
2001.

[3] Intel Corporation, Understanding the Flash
Translation Layer(FTL) Specification, http://
developer.intel.com/design/flash, December
1998.

[4] J. Kim, JM.Kim, S.H.Noh, “A Space-Effic-
ient Flash Translation Layer for Compact
Flash Systems.” 1EEE Transactions on

st ol HEEE (73 63)

111

NAND-Z2{A| sl22|g§ ol 83t

Consumer Electronics, Vol.48, No.2, pp.
366-375, 2002.

{51 J. L. Hennessy, D. A. Patterson, David
Goldberg, Computer Architecture: A Quan-
titative Approch, 3rd Edition, Morgan Kau-
fmann Publishers, 2002.

[6] JFES2, http://sources.redhat.com/jffs2/

[7]1 K.S.Yim, H. Bahn, K. Koh, "4 Com-
pressed Page Management System NAND-
type Flash Memory,” In Proceedings of the
International Conference on VLSI, pp.
266-271, 2003.

(81 MTD, "Memory Technology Device (MTD)
sub-system for Linux,” http://www.linux-
mtd .infradead.org/.

[9]1 N. Webber, Operating System Support for
Portable File system Extensions, Pro-
ceedings of the Winter USENIX 1993
Technical Conference, 219-228, January
1993.

[10] Samsung Electronics, SAMSUNG NAND
Flash Memory, Memory Product &
Technology Divi sion, 1999.

[11] Samsung Electronics, “128M x 8 bit |
64M x 16 bit NAND Flash Memory,”
http://www.san sungelectronics.com/

OXNZA 2T

T 8 2 (Koo Yong Wan)

BEk
E-mail : ywkoo@suwon.ac.kr

et ti 9t (Han Dae Man)

20063

ARk

E-mail : han38 @hanmail.net

1976 S AAAGTH 43D

198013 SYSm it AAAN EH(HAD

198811 St st AAANS S SUh

1983~8A Fddsta s 3, AFE S ar

A B 294, QuiYE A2E, AAZE Ens ARE,
Az" YEHD B, AHY $8 F

19089 SSARHEEE FFESS SUEAD

20009 AU hekd AN SLAAD

S e PFET U

2000~ @A AW Y s

B0 SGAA, PATS A2, ANZE e AZEL ANUIEND, USN

112

2006. 12.

