• Title/Summary/Keyword: In-line Valve

Search Result 195, Processing Time 0.029 seconds

A Study on Dynamic Characteristics of Directional Control Logic Valve (방향제어 조직밸브의 동특성에 관한 연구)

  • Lee, Il-Yeong;Oh, Se-Kyung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.4
    • /
    • pp.172-179
    • /
    • 1988
  • A cartridge type hydraulic logic valve consists of simple two port valve whose poppet is closed or opened by means of pressure signal of a pilot line. Accordingly, the logic valve can be used not only for direction, flow and pressure control purpose but also for versatile function valve which enables all above mentioned functions. In addition, the valve has little internal leakage and pressure loss, superior response characteristics and easiness in making small block type valve. The above mentioned good performances being recognized recently, the logic valve has been used widely in the large scale hydraulic system such as a hydraulic press system, for the performance requirements of high speed operation and precise control characteristics. However, there are scarce reports until now, except for a few ones from Aachen Institute of Technology in West Germany, so it is necessary to be studied on development and investigation for practical application. This paper showed that the static and dynamic characteristics of a logic valve when the logic valve is used for directional control, to investigate the relations between the valve operating characteristics and the valve design conditions. From the above mentioned procedure, it was ascertained that the valve operation characteristics obtained by numerical analysis showed good agreements with experimental results. The representative results obtained are as follows; 1. During the valve is closing, the poppet velocity is almost constant in the logic valve. 2. The pilot pressure P sub(3) and the resistance R in the pilot line have much influences on the valve operation time. 3. Spring strength have not such a severe influence on the valve operating time. 4. The operation characteristics of the logic valve can be estimated with good accuracy comparatively by numerical analysis with the equations describing poppet motion.

  • PDF

Dynamic Characteristics Analysis for Optimal Design of Flow Divider Valve (Flow Divider Valve의 최적설계를 위한 동특성 해석)

  • Hwang, Tae-Yeong;Park, Tae-Jo
    • 연구논문집
    • /
    • s.29
    • /
    • pp.123-130
    • /
    • 1999
  • Flow divider valve, a kind of hydraulic control valve to divide the flow from one input line to two output line uniformly, should be able to keep the constant flow to output lines despite of the change load or supply pressure. Having 5-10% flow diving error in commercial hydraulic products is one of main source of the accumulated error caused hydraulic system problem and demands the development of flow divider valve to control flow more accurately, In this paper, the dynamic characteristics of flow divider valve are investigated by the numerical estimation of the spool motion considered the external supply force. The optimum design of flow divider valve are proposed to reduce the flow diving error. For the dynamic characteristics analysis, the change of sectional area of fixed and variable orifice, and spool are studied when the input signal is accepted to a constant load.

  • PDF

Design of Ratio Control Valve for a Pressure Control Type CVT Using P-Line (P-라인을 이용한 압력제어방식 CVT 변속비제어밸브 설계)

  • 류완식;이용준;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.145-151
    • /
    • 2004
  • In this paper, a pressure control type ratio control valve(RCV) is designed for a metal belt CVT. Steady state and transient characteristics of the pressure control CVT are investigated by simulations and experiments. In addition, P-line is proposed to predict the shift performance. It is found that the bigger the pressure margin, the faster the shift response. It is expected that the P-line can be used in design of the RCV to meet the desired shift performance.

The development and Performance test of the Cook Top type Gas valve for the slim-line style Gas Range (슬림라인형 가스레인지용 쿡탑형 가스 밸브의 개발과 작동 성능 검증)

  • Kim, Sang-Ju;Lee, Sang-Cheol;Ju, Kwang-Myung;Lee, Han-Jong;Chang, In-Bae
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.568-572
    • /
    • 2003
  • The height of valve body is limited to 30mm in the cook-top style gas valves for the domestic gas ranges. But the all the safety specifications of KS should be fulfilled and the magnetic power unit(MPU) should be installed in the valve body for the safety reason. The length of MPU body is longer than the 30mm that it should be located in the square direction of the knob shaft and therefore the implementation of the lever mechanism to transmit the press motion of the knob to the MPU valve is very difficult. In this paper, the hinged lever with inclined plate is used to transmit the press motion of the knob to the MPU valve. The analysis of the gas flow with using the commercial software of FLOW-3D shows that the gas flow capacity is fit for the domestic gas range. The performance and responsibility of the valve is tested for the mass production and the test results shows that the valve can be installed in the commercial gas range.

  • PDF

Low Level Control of Metal Belt CVT Considering Shift Dynamics and Ratio Valve On-Off Characteristics

  • Kim, Tal-Chol;Kim, Hyun-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.645-654
    • /
    • 2000
  • In this paper, low level control algorithms of a metal belt CVT are suggested. A feedforward PID control algorithm is adopted for line pressure based on a steady state relationship between the input duty and the line pressure. Experimental results show that feedforward PID control of the line pressure guarantees a fast response while reducing the pressure undershoot which may result in belt slip. For ratio control, a fuzzy logic is suggested by considering the CVT shift dynamics and on-off characteristics of the ratio control valve. It is found from experimental results that a desired speed ratio can be achieved at steady state in spite of the fluctuating primary pressure. It is expected that the low level control algorithms for the line pressure and speed ratio suggested in this study can be implemented in a prototype CVT.

  • PDF

A Study on the Phase Bandwidth Frequency of a Directional Control Valve based on the Metering Orifice (미터링 오리피스를 이용한 방향제어밸브 위상각 대역폭 주파수 측정에 관한 연구)

  • Kim, Sungdong;Jeon, Sehyeong;Yun, Jooseop
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • The spool displacement of directional control valve can be considered as the standard signal to measure the bandwidth frequency of a directional control valve. When the spool displacement is not available, the metering-orifice system is implemented in this research as an alternative way of measuring the 90 degrees phase bandwidth frequency of the hydraulic directional control valve. The inertia effect on the transmission line oil induces the phase lead of the valve load pressure when compared with the phase of spool displacement. The capacitance effect of the oil induces the phase lag of the valve load pressure. The phase of the load pressure can be adjusted to be the same as that of the spool displacement by controlling the opening area of the metering orifice. A series of experiments were conducted to verify the effectiveness of the metering orifice. The 90 degrees phase bandwidth frequency measured from the valve load pressure was significantly deviated in some cases from the frequency of the spool displacement. The metering orifice was hard to be applied to measure the -90 degrees phase bandwidth frequency of the high precision.

Pressure Control of Lockup Solenoid Valve for Automatic Transmission (자동변속기 록업솔레노이드밸브의 압력제어)

  • Park, Kwan-su-;Chung, Soon-Bae;Lee, Kyo-Il-
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.472-477
    • /
    • 1994
  • The lockup clutch is embeded on torque converter of automatic transmission to prevent the efficiency deterioration of torque converter in high speed. For improving fuel consumption rate, it is desirable to engage the lockup clutch earlier. But, it results in degrading shift quality, due to the transient torque. The transient clutch pressure which affects the shifting quality, should be controlled properly. In this study, to solve the problem, it is analysed the hydraulic circuit of lockup system including line pressure regulating circuit, established the nonlinear model, and designed the PID controller. The line pressure is supplied to the lockup clutch through the lockup control valve by switching the lockup solenoid valve on. In order to control the transient pressure actively, it is needed to control the lockup solenoid valve by closed loop control. The lockup solenoid valve is 2-way on-off valve, and is adequate for PWM control. To reduce the pressure chattering, the carrier frequency is increased. Target pressure profile is computed from optimized velocity difference profile throuth dynamic equation of vehicle system.

  • PDF

An Experimental Study on Static Characteristics of Servo Valves using Transmission Line Pressures (배관 압력을 이용한 서보밸브 정적 특성에 관한 실험적 연구)

  • Kim, Sung Dong;Joo, Byeol Jin;Yun, So Nam
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.42-50
    • /
    • 2016
  • The conventional technique to measure the hysteresis and the null of servo valves is defined in ISO 10770-1 and based on load flow signal of the servo valve. A new technique based on the transmission line pressures is suggested in this study. The new measuring method was verified through a series of experiments. No hysteresis was observed between the spool displacement and the transmission line pressures, load pressure or each chamber pressure. Some hysteresis was observed between valve input and pressures, which was found to be the same as those of load flow and spool displacement for the valve input. By using the chamber pressures, the hysteresis and the null are easier to measure than the load pressure or differential pressure between those two chamber pressures because the chamber pressures showed sharp edges.

A Computational Analysis of Water-Hammer (수격현상에 대한 수치적 고찰)

  • Chun, Kwang-Min
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 1982
  • The water-hammer phenomena caused by pump power failure are analysed by digital computer. Asan cool ins water pipe system has been chosen as a model. It is Shown that after power failure the pressure at the pump outlet drops sharply, and to prevent reverse flow, either butterfly valve or check valve can be used. After the valve closure, pressure oscillates behind the valve. To weaken the pressure wave, it is recommended to install a servo-operated valve in a bypass Line around the pamp and the check valve.

  • PDF

Application & Examination of the Plan for Optimum Stability through Water-hammer in Pipe Line and Booster Pump Station (관로계통 및 가압펌프장 수격에 따른 최적 안정성 확보방안)

  • Ra, Beyong-Pil;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.5
    • /
    • pp.19-24
    • /
    • 2009
  • This paper is performed to find out the stability of water-hammer in pipe line and pump station that is happened when additional water needs demanded. At first, the water supply construction project is planned to supply $6,000\;m^3/day$ through 17.9 km pipe line. But additional demand ($1,200\;m^3/day$) happened from Cheong-ra water reservoir. In this situation, air-chamber($4\;m^3$) and vacuum breaker valve(${\varphi}100\;mm$) are needed to prevent water-hammer. When the additional water is supplied, the existing facilities (air-chamber, vacuum breaker valve) are sufficient to alleviate shock not changing capacity alteration, judging from the airspace change and rise. Therefore, there is no problem for water-hammer by installing air-chamber($4\;m^3$) and vacuum breaker valve(${\varphi}100\;mm$) at the top of Yeo-ju hill.