• Title/Summary/Keyword: In-depth Analysis

Search Result 8,214, Processing Time 0.036 seconds

Seasonal variation of species composition by depths in deep sea ecosystem of the East Sea of Korea (동해 심해 생태계의 수심별 종조성 및 계절변동)

  • Sohn, Myoung-Ho;Lee, Hae-Won;Hong, Byung-Kyu;Chun, Yong-Yul
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.376-391
    • /
    • 2010
  • To investigate seasonal variation and species composition by depth layers in the deep sea ecosystem of the East Sea of Korea, bottom trawl survey was conducted at 4 depth layers during spring and autumn from 2007 to 2009. A total of 47 species were collected and were composed of 23 fish species, 9 crustacea, 6 cephalopoda and 9 gastropoda. The main dominant species at each depth layers were Chionoecetes opilio in 300m, Berryteuthis magister in 500m, Chionoecetes japonicus in 700m and 900m. In spring, richness indices (R) showed low value of 2.01 in 500m depth, and high value of 2.16 in 300m depth. Diversity indices (H') showed low value of 1.53 in 300m depth, and high value of 2.09 in 700m depth. Dominance indices (D) showed low value of 0.15 in 700m depth, and high value of 0.31 in 300m depth. In Autumn, richness indices showed low value of 1.48 in 900m depth, and high value of 2.69 in 300m depth. Diversity' indices (H') showed low value of 1.13 in 300m depth, and high value of 2.23 in 700m depth. Dominance indices (D) showed low value of 0.14 in 700m depth, and high value of 0.54 in 300m depth. In spring, similarity analysis in each depth layers showed the difference between 900m and othe depth layer, on the contrary 500m and 700m showed the similarity. In autumn, similarity analyssis in each depth layers showed the difference between 700m and other depth layers, on the contrary 300m and 500m showed the similarity.

Statistical Characteristics of Pier-Scour Equations for Scour Depth Calculation (교각세굴심 산정 공식의 통계적 특성)

  • Lee, Ho Jin;Chang, Hyung Joon;Heo, Tae Young
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.3
    • /
    • pp.51-57
    • /
    • 2019
  • In recent years, the occurrence of localized torrential rain has increased due to the increase in heavy rainfall and massive typhoons caused by abnormal weather. As a result, the flow rate of small and medium-sized rivers in Korea is rapidly increasing, affecting the safety of bridges and increasing the risk of scour. However, the domestic bridge construction technology does not reflect the watershed characteristics of domestic rivers because the bridge scour depth calculation formula developed overseas is used to calculate the bridge scour depth. Therefore, this study is a basic study for prevention of bridge damage according to scouring phenomenon, and a comparative analysis was performed between the experimental data measured through hydraulic model test and the scour depth formulas applied in Korea. In addition, the statistical analysis between experimental data and scour depth formula shows that Coleman's (1971) formula estimates the best scour depth. The results of this study are expected to be used to calculate more accurate bridge scour depth in river design and bridge design.

A study on development of flood depth-damage functions focused on school buildings (학교건물에 대한 홍수 침수심별 손상함수 개발에 관한 연구)

  • Lee, Chang Hee;Kim, Sang Ho;Hwang, Shin Bum;Kim, Gil Ho
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.8
    • /
    • pp.513-520
    • /
    • 2017
  • In order to analyze flood damage mitigation effects, it is necessary not only to analyze inundation areas and depth through hydraulic and hydrological analysis but also to estimate flood damages. Flood damages of structure and contents of buildings are generally analyzed according to the flood depth. In this study, we developed and applied flood depth-damage functions for the school buildings based on actual damage data. In addition, the development and modification procedure of flood depth-damage functions for school buildings is presented in this paper, and the developed damage functions are verified by comparing them with the existing method. It is expected that the process of developing and applying flood depth-damage functions presented in this study can be used in the cost benefit analysis of flood damage mitigation measures.

Effect of Span-to-Depth Ratio on Behavior and Capacity in Composite Structure of Sandwich System (샌드위치식 복합구조체의 셀(Cell)형상비가 거동과 성능에 미치는 영향)

  • 정연주;정광회;김병석;박성수;황일선
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.73-78
    • /
    • 2000
  • This paper describes the effect of span-to-depth ratio, which describes aspect of cell formed with top diaphragm steel plate, on capacity in composite steel-concrete structure of sandwich system. The span-to-depth ratio \ulcorner load-carrying mechanism and load-distribution capacity of structure. Therefore, stress levels of members and load-resis\ulcorner of system vary according to span-depth ratio. In this study, numerical nonlinear analysis was performed to various ratio for two types(MA, MB) composite structure of sandwich system to analyze the influence of span-to-depth ratio or, behavior. The difference of load-carrying mechanism and stress of members results from analysis results, then bas\ulcorner differences, the effects of span-to-depth ratio on shear capacity, flexural capacity and load-resistance capacity were analyze effects on failure mode and ductility were briefly. As a results of this study, as span-to-depth ratio increases, \ulcorner bottom steel plate and concrete lower. This implies an increase in effective flexural and shear capacity. Therefore lo\ulcorner capacity of structure improves as span-to-depth ratio increases, Especially, the effect is greate in shear than flexural span-to-depth ratio increases, this difference between flexural and shear capacity may change failure mode and ductility. span-to-depth ratio increases capacity increases more than flexural capacity, we should expect that structural behavior mode gradually change from shear to flexural and ductility of structure gradually improves.

  • PDF

Surface and Interface Analysis with Medium Energy Ion Scattering Spectroscoppy

  • Moon, Dae-Wom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.129-129
    • /
    • 1998
  • Most of the surface/interface analysis tools have limited depth profiling c capability in terms of the profiling range and the depth resolution. However, M MEIS can profile the surface and subsurface composition and structure q quantitatively and non-destructively with atomic layer depth resolution. I In this presentation, the MEIS system developed at KRISS will be briefly d described with an introduction on the principle of MEIS. Recent MEIS r results on the surface and interface composition and structural change due to i ion bombardment will be presented for preferential sputtering of T:없Os and d damage depth profiles of SHooD, Pt(l11), and Cu(l1D due to Ar+ ion b bombardment. Direct observation of strained Si lattices and its distribution i in the SHool)-SiCh interface and the initial stage of Co growth on Pt(l11) w will be reported. H surfactant effects on epitaxial growth of Ge on Si(ooD w will be discussed with STM results from SND.

  • PDF

An Analytical Study on the Determination of the Lowest Improvement Depth of Deep Mixing Method (심층혼합공법의 최저 개량 심도 결정에 관한 해석적 연구)

  • Park, Choon-Sik;Song, Ji-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • Design techniques for the deep mixing method, one of the soft ground improvement methods, include two ways to interpret the ground as composite ground and pile ground. However, since comparative studies on these two approaches are insufficient, it is difficult to clearly define the analysis criteria in the design. In this study, two-dimensional and three-dimensional analyses have been performed with different conditions. The three conditions, the embankment height, depth of soft ground, and replacement ratio of reinforcement zones were varied and the analysis was performed on the basis of the assumption of composite ground and pile ground for each condition. As a result, the minimum depth of improvement in the two-dimensional analysis was deeper by 6.85~9.08% than in the three-dimensional analysis. The pile ground analysis showed that the depth of improvement was deeper by 12.22~14.45% than the composite ground analysis. Based on these results, it is concluded that for more accurate design, three-dimensional analysis should be performed rather than two-dimensional analysis. also, it is judged that necessary to analyze the ground as composite ground for economical design, and as the pile ground analysis for stable design.

Study on fluid flow characteristics of aquarium for optimum environment (최적 양식환경을 위한 수조식 양식장내의 유동특성에 관한 연구)

  • 정효민;정한식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.108-117
    • /
    • 1998
  • This study was performed to analyze the fluid flow characteristics and the temperature distribution of the aquarium for fish breeding. In this study, the finite volume method and turbulence k-$\varepsilon$ model with the SIMPLE computational algorithm are used to study the water flow in the aquarium. The calculation parameters are the circulating flow rate and the basin depth, and the experiments were carried out for the water flow visualization This numerical analysis gives reasonable velocity distributions in good agreement with the experimental data. As the results of the three dimmentional simulations, the sectional mean velocity increased as the sectional mean temperature increases for constant basin depth, and the mean velocity increased more rapidly for small basin depth than that of large basin depth, The mean velocity and temperature can be expressed as the function of the circulating flow rates and the basin depth.

  • PDF

Focal Depth Factors in the PSH Analysis

  • Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.83-86
    • /
    • 1998
  • The results from the Individual Plant Examination of External Event of Yonggwyang nuclear power plants, unit 3 & 4, in Korea have shown that the high degree of diversities of the experts' opinions on seismicity and attenuation models is su, pp.sed to be generic cause of uncertainty of APEs(annual exceedance probability) in the PAHA(probabilistic seismic hazard analysis). This study investigated the sensitivity of the focal depth, which is one of the most uncertain seismicity parameters in Korea, Significant differences in resultant values of annual exceedance probabilities and much more symmetrical shape of the resultant PDFs(probability density functions), in case of consideration of focal depth, are found. These two results suggest that, even for the same seismic input data set including the seismicity models and ground motion attenuation models, to consider focal depth additionally for probabilistic seismic hazard analysis evaluation makes significant influence on the distributions of uncertainties and probabilities of exceedance per year for the whole ranges of seismic hazard levels. These facts suggest that it is necessary to derive focal depth parameter more effectively from the historical and instrumental documents on earthquake phenomena in Koran Peninsula for the future study of PSHA.

  • PDF

Modeling of Depth/Width of Cut for Abrasive Water Jet Milling of Titanium (티타늄의 워터젯 밀링을 위한 가공깊이/폭 모델링)

  • Park, Seung Sub;Kim, Hwa Young;Ahn, Jung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.83-88
    • /
    • 2016
  • Because of the increasing tool cost for cutting hard-to-cut materials, abrasive water jet (AWJ) milling recently has been regarded as a potential alternative machining method. However, it is difficult to control the depth and width of cut in AWJ milling because they vary depending on many AWJ cutting parameters. On 27 conditions within a limited range of pressure, feed rate, and abrasive flow rate, AWJ cutting was conducted on titanium, and depth profiles were measured with a laser sensor. From the depth profile data, depth and width of cut were acquired at each condition. The relationships between depth and parameters and between width and parameters were derived through regression analysis. The former can provide proper cutting conditions and the latter the proper pick feed necessary to generate a milled surface. It is verified that pressure mostly affects depth, whereas abrasive flow rate mostly affects width.

Comparison of Depth Profiles of CIGS Thin Film by Micro-Raman and XPS (마이크로 라만 및 XPS를 이용한 CIGS 박막의 두께방향 상분석 비교)

  • Beak, Gun Yeol;Jeon, Chan-Wook
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.21-24
    • /
    • 2016
  • Chalcopyrite based (CIGS) thin films have considered to be a promising candidates for industrial applications. The growth of quality CIGS thin films without secondary phases is very important for further efficiency improvements. But, the identification of complex secondary phases present in the entire film is crucial issue due to the lack of powerful characterization tools. Even though X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and normal Raman spectroscopy provide the information about the secondary phases, they provide insufficient information because of their resolution problem and complexity in analyzation. Among the above tools, a normal Raman spectroscopy is better for analysis of secondary phases. However, Raman signal provide the information in 300 nm depth of film even the thickness of film is > $1{\mu}m$. For this reason, the information from Raman spectroscopy can't represent the properties of whole film. In this regard, the authors introduce a new way for identification of secondary phases in CIGS film using depth Raman analysis. The CIGS thin films were prepared using DC-sputtering followed by selenization process in 10 min time under $1{\times}10^{-3}torr$ pressure. As-prepared films were polished using a dimple grinder which expanded the $2{\mu}m$ thick films into about 1mm that is more than enough to resolve the depth distribution. Raman analysis indicated that the CIGS film showed different secondary phases such as, $CuIn_3Se_5$, $CuInSe_2$, InSe and CuSe, presented in different depths of the film whereas XPS gave complex information about the phases. Therefore, the present work emphasized that the Raman depth profile tool is more efficient for identification of secondary phases in CIGS thin film.