• Title/Summary/Keyword: In-Vehicle information system

Search Result 2,243, Processing Time 0.027 seconds

Damage identification of vehicle-track coupling system from dynamic responses of moving vehicles

  • Zhu, Hong-Ping;Ye, Ling;Weng, Shun;Tian, Wei
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.677-686
    • /
    • 2018
  • The structural responses are often used to identify the structural local damages. However, it is usually difficult to gain the responses of the track, as the sensors cannot be installed on the track directly. The vehicles running on a track excite track vibration and can also serve as response receivers because the vehicle dynamic response contains the vibration information of the track. A damage identification method using the vehicle responses and sensitivity analysis is proposed for the vehicle-track coupling system in this paper. Different from most damage identification methods of vehicle-track coupling system, which require the structural responses, only the vehicle responses are required in the proposed method. The local damages are identified by a sensitivity-based model updating process. In the vehicle-track coupling system, the track is modeled as a discrete point supported Euler-Bernoulli beam, and two vehicle models are proposed to investigate the accuracy and efficiency of damage identification. The measured track irregularity is considered in the calculation of vehicle dynamic responses. The measurement noises are also considered to study their effects to the damage identification results. The identified results demonstrate that the proposed method is capable to identify the local damages of the track accurately in different noise levels with only the vehicle responses.

A Study of Vehicle's Sensor Signal Monitoring and Control Using Zigbee Wireless Communication and Web-based Embedded System (지그비 무선통신과 웹 기반의 임베디드 시스템을 이용한 자동차 센서신호 감시 및 제어에 관한 연구)

  • Yang, Seung-Hyun;Lee, Suk-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • In this paper, we constructed Embedded web-server to be monitored and controlled for intelligent vehicle on the base of embedded system and Zigbee wireless communication. By interfacing main controller and embedded system with ECU including every information of vehicle, it is possible to monitor the cruising information of vehicle, and sensor signal added to inside and outside of vehicle is transferred to embedded system through Zigbee communication. Web-server is constructed using embedded system, that's why the access to vehicle is possible using PC or mobile instrument, and the real-time check and control of vehicle is possible as well.

A Study on the automatic vehicle monitoring system based on computer vision technology (컴퓨터 비전 기술을 기반으로 한 자동 차량 감시 시스템 연구)

  • Cheong, Ha-Young;Choi, Chong-Hwan;Choi, Young-Gyu;Kim, Hyon-Yul;Kim, Tae-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • In this paper, we has proposed an automatic vehicle monitoring system based on computer vision technology. The real-time display system has displayed a system that can be performed in automatic monitoring and control while meeting the essential requirements of ITS. Another advantage has that for a powerful vehicle tracking, the main obstacle handing system, which has the shadow tracking of moving objects. In order to obtain all kinds of information from the tracked vehicle image, the vehicle must be clearly displayed on the surveillance screen. Over time, it's necessary to precisely control the vehicle, and a three-dimensional model-based approach has been also necessary. In general, each type of vehicle has represented by the skeleton of the object or wire frame model, and the trajectory of the vehicle can be measured with high precision in a 3D-based manner even if the system has not running in real time. In this paper, we has applied on segmentation method to vehicle, background, and shadow. The validity of the low level vehicle control tracker was also detected through speed tracking of the speeding car. In conclusion, we intended to improve the improved tracking method in the tracking control system and to develop the highway monitoring and control system.

A Simulation of Vehicle Parking Distribution System for Local Cultural Festival with Queuing Theory and Q-Learning Algorithm (대기행렬이론과 Q-러닝 알고리즘을 적용한 지역문화축제 진입차량 주차분산 시뮬레이션 시스템)

  • Cho, Youngho;Seo, Yeong Geon;Jeong, Dae-Yul
    • The Journal of Information Systems
    • /
    • v.29 no.2
    • /
    • pp.131-147
    • /
    • 2020
  • Purpose The purpose of this study is to develop intelligent vehicle parking distribution system based on LoRa network at the circumstance of traffic congestion during cultural festival in a local city. This paper proposes a parking dispatch and distribution system using a Q-learning algorithm to rapidly disperse traffics that increases suddenly because of in-bound traffics from the outside of a city in the real-time base as well as to increase parking probability in a parking lot which is widely located in a city. Design/methodology/approach The system get information on realtime-base from the sensor network of IoT (LoRa network). It will contribute to solve the sudden increase in traffic and parking bottlenecks during local cultural festival. We applied the simulation system with Queuing model to the Yudeung Festival in Jinju, Korea. We proposed a Q-learning algorithm that could change the learning policy by setting the acceptability value of each parking lot as a threshold from the Jinju highway IC (Interchange) to the 7 parking lots. LoRa Network platform supports to browse parking resource information to each vehicle in realtime. The system updates Q-table periodically using Q-learning algorithm as soon as get information from parking lots. The Queuing Theory with Poisson arrival distribution is used to get probability distribution function. The Dijkstra algorithm is used to find the shortest distance. Findings This paper suggest a simulation test to verify the efficiency of Q-learning algorithm at the circumstance of high traffic jam in a city during local festival. As a result of the simulation, the proposed algorithm performed well even when each parking lot was somewhat saturated. When an intelligent learning system such as an O-learning algorithm is applied, it is possible to more effectively distribute the vehicle to a lot with a high parking probability when the vehicle inflow from the outside rapidly increases at a specific time, such as a local city cultural festival.

Realization of Unified Protocol of Multi-functional Controller for Transfer of Vehicle Information on the Roads (차량 검지정보 전송을 위한 다기능 제어기 통합 프로토콜 구현)

  • Ahn, Seung-Yong;Lim, Sung-Kyu;Lee, Seung-Yo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1857-1863
    • /
    • 2012
  • The VDS(Vehicle Detection System) collects and transfers information about traffic situations in real time, therefore it makes the traffic management effective. Recently, the VDSs have provided good stability and accuracy in regard to system reliability and functions but they also have showed problems such as raising costs and consuming times when a new system is installed and/or the environmental requirements for the system are set up. The reason of the problems is that up to now the collection of the data and information about the traffic situations has been achieved by the 1:1 information exchange between the traffic control surveillance center and the each traffic field, between equipments and centers, and among data processing equipments and also centers. The communication systems used in the VDS are generally composed of 1 : 1 connection of the lines because the communication protocols are different in the most of the cases mentioned above. Consequently, this makes the number of communication lines become larger and causes the cost for the whole traffic information systems to increase. In this paper, a development of a controller to unify the communication protocols for the VDS is peformed to solve the problems which were mentioned above. Specially, the controller developed in this paper was applied to a radar vehicle detector and tested to show its usefulness. In addition to that, the developed controller was also designed to include functions to transfer the information about weather conditions on the roads.

Study on Utilization of Digital Tacho Graph in Construction Machinery Information Systemm (건설기계 정보화시스템 구축을 위한 운행기록장치 활용방안)

  • Yoon, Janet;Lee, Seung-Cheol
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.2
    • /
    • pp.17-23
    • /
    • 2016
  • Construction of our machine "Digital Tacho Graph" toghether with development and intergrated management system information is attached under Traffic Safety Law in article submission. This machine "Digital Tach Graph" has been mandated on a priority basis. The entire machine is constructed with specialised components to collect data that can retrive basic information. To obtain the components to perfect the information to optimize the device and system.

Design and Implementation of Vehicle Hazard Lamp Automatic Operation System Using Acceleration Sensor

  • Lee, Sang-Ryeol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.91-98
    • /
    • 2020
  • In order to prevent a collision accident during sudden braking, we have proposed an hazard lamps automatic operation system that can be easily installed in existing vehicles that do not have hazard lamps automatic operation. There are several ways to recognize sudden braking. Using GPS, the system does not work in a tunnel, and it is difficult to install the system additionally on an existing vehicle using a vehicle speed sensor. Therefore, the proposed system eliminates these problems by using the acceleration sensor and makes it possible to recognize even the sudden turning and bounce of the vehicle.

Digital Tachograph Vehicle Data Digital Authentication System (디지털 운행기록장치의 운행기록 데이터 디지털 인증 시스템)

  • Kang, Joon-Gyu;Kim, Yoo-Won;Lim, Ung-Taeg;Jun, Moon-Seog
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.6
    • /
    • pp.47-54
    • /
    • 2013
  • In this paper, we proposed an efficient digital authentication service system for the vehicle data collected from digital tachograph. In domestic, There is no method available to verify that information has not been forged and reliable information for collected vehicle data. The proposed method in this paper can prove transmitted vehicle data that have not been forged using the signature value. The signature value of digital authentication is produced with the digital signature generation key after obtaining the hash value of vehicle data. It is achieved through checking the stored hash value and the hash value match that is obtained with the digital signature verification key from the digital signature value. We confirmed the proposed system can ensure reliability of vehicle data through the system implementation and experiment.

Research on Information Providing Method for Intelligent Navigation System

  • Park, Hye-Sun;Kim, Kyong-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.657-670
    • /
    • 2012
  • Background: Today, numerous telematics technologies, i.e., technologies developed by integrating telecommunications with information processing, are applied in vehicles. One such developmental application of this technology to vehicles is to increase the safety or convenience of drivers by providing them with necessary information such as warnings and information on emergencies and traffic situations. However, under certain conditions, there is a high probability of traffic accidents if the driving workload is high. Nowadays, the navigation system is frequently used in the vehicles, this system provides various information including route to the driver. But, the existing navigation systems are not only considered a driver's reaction but also provide unilaterally to the information regardless of them. Such one-side information service type may miss important information to the driver. In addition, it sometimes interferes safety driving. Objective: To solve this problem, the intelligent navigation system needs to the providing way that it checks the driver's reactions after providing information. Namely, if the driver passes the information received from the navigation, then the intelligent system provides more loudly and more frequently. Method: Therefore, in this study we introduce the intelligent navigation system that it automatically controls modality type and its strength when the driver misses or overlooks the information for their safety and entertainment and we analyze the driver's cognitive responses about the modality type and its strength. Results: To evaluate the effectiveness of the proposed system, we analyzed the reaction time and driving workload for each type of the information, modality and its strength. Also we evaluated the users' subjective satisfaction and understanding based on a questionnaire.

A Study on the System of Vehicle Pedal Based on Simple Reaction Time of Visual Information (시각정보의 단순반응시간을 고려한 페달 시스템의 관한 연구)

  • 고관명;이근희
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.14 no.23
    • /
    • pp.37-46
    • /
    • 1991
  • This study deals with the designing of vehicle pedal considering simple reaction time of visual information. Because vehicle accidents may bring about fatal results, the vehicle design which is considered with safity is very important. Though the vehicle design considered with safity is important in the whole parts of vehicle, the designing of pedal which is directly connected the designing of pedal which can minimize reaction time to risk through simple experiments. In the experiments, the experience of driving, the location of brake pedal and the space between brake and accelerator pedal are considered. Using experiment equipment and IBM-PC, simple reaction time was measured. The data which was result from measurement was analyzed with SPSS/PC+. When brake pedal located right side and the space between brake and accelerator pedal was 35cm, reaction was minimized. Based on this results, the vehicle pedal should be designed.

  • PDF