• Title/Summary/Keyword: In-Situ Stress

Search Result 508, Processing Time 0.028 seconds

Case Study on In-situ Stress Measurement by Over-coring and Its Application to Design of a Pumped Storage Power Plant (오버코어링법에 의한 초기지압측정 및 양수발전소 설계적용사례)

  • Kim, Dae-Young;Lee, Hong-Sung;Lee, Young-Nam
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.90-101
    • /
    • 2007
  • With increasing development of underground space, underground pumped storage power plants, which generate power by felling water in upper reservoir to lower reservoir, have been continuously constructed. For efficient and safe design, construction and maintenance or such power plants, it is very important to understand in-situ stress and the mechanical properties of the surrounding rock mass at the design stage. The power plant presented in this paper is under construction at a depth of $320{\sim}375m$. For stability evaluation of the structure, in-situ stress was measured by over-coring method. Also pressurementer test and a series or laboratory tests were performed to obtain the mechanical properties. Numerical analyses were conducted to check the efficiency of designed support patterns. The results showed that unstable areas occurred partly in the numerical model, and therefore supports were additionally applied. Finally complete stability was obtained and the following excavation has been operated successfully until now.

Electromechanical Relationn of metallic heat wires and Its Application to the Estimation of In_situ Stress of Structural Tendons (금속계열선의 전기기계적 상관작용과 긴장력 계측이 가능한 긴장재)

  • Zi Goang-Seup;Jun Ki-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.445-450
    • /
    • 2006
  • It is proposed that the electromechanical relation of the conductive materials with high electrical resistance may be used to estimate the current stress of prestressing tendons. To choose the best conductive material to this end, we studied the electromechanical relations of carbon fibers and metalic heat wires experimentally. It is found that the relation of carbon fibers can be modelled by a parabolic(or hyperbolic) function in the early stage of deformation. However because the relation is not consistent when it is unloaded and reload, carbon fibers are not suitable for this purpose. Metallic heat wires show a consistent linear relation during loading and unloading in the elastic deformation and are suitable for this purpose. To estimate the electromechanics relation of metallic wires, we developed a simple formula based on the rigid plasticity. We propose a new kind of prestressing tendons whose stress can be monitored.

  • PDF

Evaluation of Traffic Load and Moisture-Induced Nonlinear In-Situ Stress on Pavement Foundation Layers (도로기초에서 교통 및 환경하중에 의한 비선형 현장 응력 거동 평가)

  • Park, Seong-Wan;Hwang, Kyu-Young;An, Dong-Seok;Jeong, Mun-Kyoung;Seo, Young-Guk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.11-16
    • /
    • 2009
  • Better understanding of in-situ mechanical behavior of pavement foundations is very important to predict long-term effects on the system performance of transport infrastructure. In order to do that, resilient stiffness characterization of geomaterals is needed to properly adopt such mechanistic analysis under both traffic and environmental loadings. In this paper, in situ monitoring data from KHC test road was used to analyze the non-linearity of stress conditions under traffic and moisture loadings. Then, the predicted non-linear response using finite element method with a selected constitutive model of foundation geomaterials are verified with the field data.

  • PDF

Analysis of bridging Stress Effect of Polycrystlline Aluminas Using Double Cantilever Beam Method (Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석 III. 다결정 알루미나의 Bridging 응력분포)

  • 손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.602-615
    • /
    • 1996
  • The purpose of the present study is to investigate the microstructural effect on the R-curve behavior in three aluminas with different grain size distributions by analyzing the bridging stress distribution. The crack opening displacement (COD) according to the distance behind the stationary crack tip was measured using an in situ SEM fracture method. The measured COD values in the fine-grained alumina agreed well with Wiederhorn's sollution while they deviated from Wiederhorn's solution in the two coarse-grained aluminas because of the increase of the crack closure due to the grain interface bridging in the crack wake. A numerical fitting procedure was conducted by the introduction of the power-law relation and the current theoretical model together with the measured COD's in order to obtain the bridging stress distribution. The results indicated that the bridging stress function and the R-curve computed by the current model were consistent with those computed by the power-law relation providing a reliable evidence for the bridging stress analysis of the current model. The strain-softening exponent in the power-law relation n, was calculated to be in the range from 2 to 3 and was closely related to the grain size distribution. Thus it was concluded from the current theoretical model that the grain size distribution affected greatly the bridging stress distribution thereby resulting in the quantitative analysis of microfracture of polycrystalline aluminas through correlating the local-fracture-cont-rolling microstructure.

  • PDF

An experimental procedure for evaluating the consolidation state of marine clay deposits using shear wave velocity

  • Chang, Ilhan;Kwon, Tae-Hyuk;Cho, Gye-Chun
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.289-302
    • /
    • 2011
  • In marine clay deposits, naturally formed or artificially reclaimed, the evaluation and monitoring of the consolidation process has been a critical issue in civil engineering practices due to the time frame required for completing the consolidation process, which range from several days to several years. While complementing the conventional iconographic method suggested by Casagrande and recently developed in-situ techniques that measure the shear wave, this study suggests an alternative experimental procedure that can be used to evaluate the consolidation state of marine clay deposits using the shear wave velocity. A laboratory consolidation testing apparatus was implemented with bimorph-type piezoelectric bender elements to determine the effective stress-shear wave velocity (${\sigma}^{\prime}-V_s$) relationship with the marine clays of interest. The in-situ consolidation state was then evaluated by comparing the in-situ shear wave velocity data with the effective stress-shear wave velocity relationships obtained from laboratory experiments. The suggested methodology was applied and verified at three different sites in South Korea, i.e., a foreshore site in Incheon, a submarine deposit in Busan, and an estuary delta deposit in Busan. It is found that the shear wave-based experimental procedure presented in this paper can be effectively and reliably used to evaluate the consolidation state of marine clay deposits.

Characteristics of Undrained Shear Strength of Yangsan Clay (양산지역 점토의 비배수 전단강도 특성)

  • 김길수;임형덕;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.71-78
    • /
    • 2000
  • SHANSEP method involves the consolidation to stresses in excess of the preconsolidation pressure in order to overcome sample disturbance effect. The concept of SHANSEP is based on an approach to laboratory test which attempts to reproduce the in-situ conditions more closely than is possible in routine tests and evaluates normalized strength parameters for the soil as a function of OCR. But SHANSEP method can be applied only to fairly uniform clay deposits, and is unsuitable for a random deposit. In this study, CK/sub o/U triaxial compression test and incremental loading consolidation test were performed for the application of SHANSEP method on Yangsan clay. During the K/sub o/-consolidation, triaxial specimens were consolidated to stress equal to two times the in-situ vertical effective stress. And for overconsolidated condition, the specimens were swelled to a known vertical effective stress in order to have the desired OCR. With the results of CK/sub o/U triaxial compression test using the block samples, the relationship between c/sub u//σ/sub vc/' and OCR on Yangsan clay was established. For evaluating the undrained shear strength of Yangsan clay with depth, CK/sub o/U triaxial compression test was performed using the piston samples taken from Yangsan site. And also undrained shear strength was analyzed from the in-situ test such as Cone Penetration Test(CPT), Dilatometer Test(DMT), and Field Vane Test(FVT) and was compared with that of CK/sub o/U triaxial compression test.

  • PDF

Electrical Properties of MOS Capacitors and Transistors with in-situ doped Amorphous Si Gate (증착시 도핑된 비정질 Si 게이트를 갖는 MOS 캐패시터와 트랜지스터의 전기적 특성)

  • 이상돈;이현창;김재성;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.107-116
    • /
    • 1994
  • In this paper, The electrical properties of MOS capacitors and transistoras with gate of in-situ doped amorphous Si and poly Si doped by POCI$_3$. Under constant current F-N stress, MOS capacitors with in-situ doped amorphous Si gate have shown the best resistance to degradation in reliabilty properties such as increase of leakage current, shift of gate voltage (V$_{g}$). shift of flat band voltage (V$_{fb}$) and charge to breakdown(Q$_{bd}$). Also, MOSFETs with in-situ doped amorphous Si gate have shown to have less degradation in transistor properties such as threshold voltage, transconductance and drain current. These improvements observed in MOS devices with in-situ doped amorphous Si gate is attributed to less local thinning spots at the gate/SiO$_2$ interface, caused by the large grain size and the smoothness of the surface at the gate/SiO$_2$ interface.

  • PDF

In-situ Crack Propagation Observation of a Particle Reinforced Polymer Composite Using the Double Cleavage Drilled Compression Specimens

  • Lee Yeon-Soo;Yoon Young-Ki;Jeong Bo-Young;Yoon Hi-Seak
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.310-318
    • /
    • 2006
  • In this study, we investigate the feasibility of in-situ crack propagation by using a double cleavage drilled compression (DCDC) specimen showing a slow crack velocity down to 0.03 mm/s under 0.01 mm/s of displacement control. Finite element analysis predicted that the DCDC specimens would show at least 4.3 fold delayed crack initiation time than conventional tensile fracture specimens under a constant loading speed. Using DCDC specimens, we were able to observe the in-situ crack propagation process in a particle reinforced transparent polymer composite. Our results confirmed that the DCDC specimen would be a good candidate for the in-situ observation of the behavior of particle reinforced composites with slow crack velocity, such as the self-healing process of micro-particle reinforced composites.

Measurement of Rock Permeability Considering In-situ Stress Conditions (현장 응력조건에 따른 암석 투과도 특성 분석)

  • Kim, Jaewon;Choi, Junhyung;Choe, Keumbong;Sim, Sumin;Lee, Dae Sung
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.26-38
    • /
    • 2017
  • In this study, bedding rock permeability was measured using Berea sandstones with three different beddings. The fracture permeability was also measured using tight sandstone with two different fracture regimes considering in-situ stress conditions. The Berea sandstone with vertical, horizontal and non-bedding was used to analyze evolution of permeability upon in-situ stress conditions. In order to describe applied effective stress around rock in underground, the triaxial pressure cell & hydrostatic pressure cell was designed and permeability experiments were performed with controlled axial and confining pressures. The measurement of permeability was conducted by increasing and decreasing effective stress. The permeability of non-bedding rock sample is the most sensitive to applied stress conditions and fracture permeability of tight sandstone increases with fracture treatment with proppant.