• Title/Summary/Keyword: In-Cylinder Gas Flow

Search Result 200, Processing Time 0.03 seconds

Analysis of the flow field in two-stroke engine cylinder of different intake ports angles (포트각도에 따른 2행정기관 실린더내의 유동장 해석)

  • 홍기배;최영진;유홍선;정인식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.55-66
    • /
    • 1993
  • The characteristics of the flow processes in the cylinder of the two-stroke cycle engines have become the subject of increasing and attention owing to the simplicity and the higher power per unit weight of the two-stroke cycle engine. Among the many factors which influence on the scavenging flow, the port angle is important factor. Hence, four different type models with one inlet-port and two side-ports are studied to show the effect of port angle on the laminar scavenging flow. When the inlet-port axial is relatively larger than the side-port axial angle, it is showed that the fresh charge penetrate into the burned gas and displace it first toward the cylinder head and then toward the exhaust port. When the inlet-port axial angle is much less than the side-port axial angle, the fresh charge through the inlet-port directly move toward the exhaust port. The result showed that the model A may suppress the generation of vortices in the vicinity of inlet and side prots which restrict the sufficient supply of fresh charge and obstruct the perfect displacement of all combustion products.

  • PDF

Flow Analysis of Gas Circuit Breakers for Developing the Small Current Interruption Performance (가스차단기의 소전류 차단성능 향상을 위한 유동해석)

  • Lee, Jong-Chul;Choi, Jong-Ung;Kang, Sung-Mo;Kim, Youn-Jea
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1961-1965
    • /
    • 2003
  • The flow analysis is needed to verify the physical phenomena through interruption processes for improving the capacity and the reliability of gas circuit breakers. Moreover the small current interruption performance of GCBs could be predicted by coupling the flow characteristics with the electric field one. In this paper, the unsteady flow characteristics and the traveling trajectory are depicted with a commercial CFD code, PHOENICS, programmed for moving motion of objects. In order to validate computational results, the measured pressure data in cylinder and in front of arcing contact are compared with the test results of small current interruption.

  • PDF

Flow-Induced Noise and Vibration Due to von Karman Streets in Tube-Bank Ducts of Gas Air Heat Exchangers (열공급 보일러 배가스 열교환기 덕트에서 발생하는 과도 소음 현상)

  • Kim, Yeon-Whan;Koo, Jae-Raeyang;Bae, Yong-Chae;Lee, Hyun;Kim, Sung-Hwi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.339-345
    • /
    • 2002
  • When a flow passes a series of parallel ones, vortexes will be formed in the wake after the cylinder. This paper treats the problems of vibration and noise in tube bank of gas flow duct of heat exchanger thermal suppling boiler in combine cycle thermal power plants. The boiler burner type has recently been changed to low Nox burner and begun commercial operation. After more load up operation then 70%, high level noise and vibration were generated at gas flow duct of heat exchanger.

  • PDF

Combustion and Exhaust Emission Characteristics by the Change of Intake Air Temperature in a Single Cylinder Diesel Engine (단기통 디젤엔진에서 흡기온도변화에 따른 연소 및 배기특성)

  • Shin, Dalho;Park, Suhan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.336-343
    • /
    • 2017
  • Intake air conditions, such as air temperature, pressure, and humidity, are very important parameters that influence engine performance including combustion and emissions characteristics. The purpose of this study is to investigate the effects of intake air temperature on combustion and exhaust emissions characteristics in a single cylinder diesel engine. In this experiment, an air cooler and a heater were installed on the intake air line and a gas flow controller was installed to maintain the flow rate. It was found that intake air temperature induced the evaporation characteristics of the fuel, and it affects the maximum in-cylinder pressure, IMEP(indicated mean effective pressure), and fuel consumption. As the temperature of intake air decreases, the fuel evaporation characteristics deteriorate even as the fuel temperature has reached the auto-ignition temperature, so that ignition delay is prolonged and the maximum pressure of cylinder is also reduced. Based on the increase in intake air temperature, nitrogen oxides(NOx) increased. In addition, the carbon monoxide(CO) and unburned hydrocarbons(UHC) increased due to incomplete fuel combustion at low intake air temperatures.

A Study on Temperature Characteristics of Automatic Valve for High Pressure Cylinder of FCV (수소연료전지 자동차 압력 용기용 전자밸브의 온도 특성에 관한 연구)

  • Lee, Hyo-Ryeol;Ahn, Jung-Hwan;Kim, Hwa-Young;Kim, Young-Gu
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • FCV is installed with a automatic valve attached in an high pressure cylinder to control the hydrogen flow. The supply of hydrogen from the cylinder into the fuel cell stack is controlled via the on/off operation of a solenoid attached to the automatic valve. The solenoid needs to provide the necessary attraction force even at any saturation temperature caused by drive of the vehicle. In this study, the simplified prediction equations for the saturation temperature are suggested. The finite element analysis was performed by steady state technique, according to the boundary condition in order to predict the saturation temperature and attraction force. Finally, the saturation temperature was validated through comparison between the analysis results and measurement results. From the results, the measured saturation temperature $5.9^{\circ}C$ lower with respect to the analysis results. And the error of attraction force ranged from 1.0 to 2.1 N at testing conditions.

Study on Electrohydrodynamic Analysis of Cylinder Type ESP (원통형 전기집진기의 전기유체역학적 해석에 관한 연구)

  • 조용수;여석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.243-254
    • /
    • 1996
  • The main purpose of this study is to investigate the collection efficiency characteristics of a cylindrical ESP. To do that, it is necessary to analyze the electric field, gas flow field, and mechanism of particle movement by numerical simulation based on EHD model. For a gas flow field, Navier-Stokes equation involving the electric source term was solved by SIMPLE algorithm. In case of the electric field, the current continuity and electric field equations were solved by S.O.R. method. The analysis of particle movement was performed on the basis of PSI-CELL model from the Lagrangian viewpoint. The results showed that the influence on the gas flow field by the electric field is almost negligible in a cylindrical ESP. The particle drift velocity $V_P$ toward the collection surface is increased continuously by the electrostatic force due to the rise of particle charge as the particle is moving to the flow direction and the particle size becomes larger. The collection efficiency is to quitely higher with the increase of applied voltage for the same particle size, while becomes smaller as the inlet velocity is increased.

  • PDF

Direct Simulation of Acoustic Sound by the Finite Difference Lattice Boltzmann Method (차분격자볼츠만법에 의한 유체음의 직접계산)

  • Kang, Ho-Keun;Ro, Ki-Deok;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1827-1832
    • /
    • 2003
  • In this research, the simulation method for acoustic sounds by a uniform flow around a two-dimensional circular cylinder by using the finite difference lattice Boltzmann model is explained. To begin with, we examine the boundary condition which determined with the distribution function $f_i^{(0)}$ concerning with density, velocity and internal energy at boundary node. Very small acoustic pressure fluctuation, with same frequency as that of Karman vortex street, is compared with the pressure fluctuation around a circular cylinder. The acoustic sound' propagation velocity shows that acoustic approa ching the upstream, due to the Doppler effect in the uniform flow, slowly propagated. For the do wnstream, on the other hand, it quickly propagates. It is also apparently the size of sound pressure was proportional to the central distance $r^{-1/2}$ of the circular cylinder. The lattice BGK model for compressible fluids is shown to be one of powerful tool for simulation of gas flows.

  • PDF

A study on the characteristics of gas flow in inlet port of 2 cycle engine (2사이클 기관 흡기 포오트의 가스 유동 특성에 관한 연구)

  • 이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.725-730
    • /
    • 1987
  • An experimental study of the air flow through inlet pipe of reciprocating two-cycle engine was investigated under motored condition. Measurements of the two components of velocity, velocity fluctuation, and the other behavior of inlet flow have been obtained by laser Doppler anemometer system. The research engine comprised the cylinder head of a two-cycle engine which mounted on optical spacer with measuring window and glass inlet entry for laser anemometer measurement. A dual beam laser Doppler anemometer was used with conventional forward scattered method and comprised argon-ion laser, frequency shifter with Bragg cell module, and the signal processor. Measurements of mean velocity fluctuation of inlet flow for different engine speeds, measuring positions, and the changes in cylinder volume are investigated. The results presented show that the changes in engine speed is shown to be strongly influenced on the mean velocity of inlet air. The effect of measuring position and cylinder volume on the inlet velocity was also investigated for the inlet port entry and is shown to be small compared to the engine speed.

A FEASIBILITY STUDY OF A NAVIER-STOKES FLOW SOLVER USING A KINETIC BGK SCHEME IN TRANSITIONAL REGIME (Kinetic BGK 기법을 이용한 Navier-Stokes 유동 해석자의 천이 영역 적용성 연구)

  • Cho, M.W.;Yang, T.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.54-61
    • /
    • 2015
  • In the present study, a flow solver using a kinetic BGK scheme was developed for the compressible Navier-Stokes equation. The kinetic BGK scheme was used to simulate flow field from the continuum up to the transitional regime, because the kinetic BGK scheme can take into account the statistical properties of the gas particles in a non-equilibrium state. Various numerical simulations were conducted by the present flow solver. The laminar flow around flat plate and the hypersonic flow around hollow cylinder of flare shape in the continuum regime were numerically simulated. The numerical results showed that the flow solver using the kinetic BGK scheme can obtain accurate and robust numerical solutions. Also, the present flow solver was applied to the hypersonic flow problems around circular cylinder in the transitional regime and the results were validated against available numerical results of other researchers. It was found that the kinetic BGK scheme can similarly predict a tendency of the flow variables in the transitional regime.

A study on the performance prediction of 4 cycle 4 cylinder S.I. engine considering the unsteady flow in the intake and exhaust pipes (흡배기 관내의 비정상 유동을 고려한 4사이클, 4기통 전기.점화 기관의 성능 예측에 관한 연구)

  • 박성서;김응서
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.72-81
    • /
    • 1991
  • In this study, the analytic investigation of the unsteady flow in the intake and exhaust pipes has been carried out using the method of characteristics in one direction to predict volumetric efficiency. Based on the calculated volumetric efficiency, three zone predictive analysis using Wiebe function was applied to predict the engine performance and the results were compared with experiment. Mixture in the cylinder is subdivided into three zones during combustion process in this analysis; adiabatic core zone, thermal boundary layer zone and unburned zone. In each zone, pressure, temperature and gas composition have been calculated. In conclusion, it is possible to take account of the intake and exhaust pipe tuning effect in predicting the engine performance, by the analytic solution of the unsteady flow in the pipes, and comparison of prediction with experimental results shows a good agreement on the pressure variation in the intake and exhaust pipes which has a direct influence on the volumetric efficiency and performance of the engine.

  • PDF