• 제목/요약/키워드: In-Cylinder Gas Flow

검색결과 200건 처리시간 0.031초

Water Injection/Urea SCR System Experimental Results for NOx Reduction on a Light Duty Diesel Engine

  • Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권3호
    • /
    • pp.394-403
    • /
    • 2008
  • The effects of water injection (WI) and urea injection for NOx on a 4-cylinder Direct Injection (DI) diesel engine were investigated experimentally. For water injection, it was installed at the intake pipe and the water quantity was controlled at the intake manifold and Manifold Air Flow (MAF) temperatures while the urea injection was located at the exhaust pipe and the urea quantity was controlled by NOx quantity and MAF. The effects of WI system, urea-SCR system and the combined system were investigated with and without exhaust gas recirculation (EGR). Several experiments were performed to characterize the urea-SCR system, using engine operating points of varying raw NOx emissions. The results of the Stoichiometric Urea Flow (SUF) and NOx map were obtained. In addition, NOx results were illustrated according to the engine speed and load. It is concluded that the NOx reduction effects of the combined system without the EGR were better than those with the EGR-based engine.

오토 사이클 기관의 열역학 제 2법칙적 성능 해석 (The Performance Analysis of Otto Cycle Engine by Thermodynamic Second Law)

  • 김성수;노승탁
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.94-102
    • /
    • 2001
  • The thermodynamic second law analysis, which means available energy or exergy analysis, for the indicated performance of Otto cycle engine has been carried out. Each operating process of the engine is simplified and modeled into the thermodynamic cycle. The calculation of the lost work and exergy through each process has been done with the thermodynamic relations and experimental data. The experimental data were measured from the test of single cylinder Otto cycle engine which operated at 2500 rpm, WOT(Wide Open Throttle) and MBT(Minimum advanced spark timing for Best Torque) condition with different fuels: gasoline, methanol and mixture of butane-methanol called M90. Experimental data such as cylinder pressure, air and fuel flow rate, exhaust gas temperature, inlet gas temperature and etc. were used for the analysis. The proposed model and procedure of the analysis are verified through the comparison of the work done in the study with experimental results. The calculated results show that the greatest lost work is generated during combustion process. And the lost work during expansion, exhaust, compression and induction process follows in order.

  • PDF

배기관의 길이변화가 4사이클 4기통 전기 점화기관의 성능에 미치는 영향에 관한 연구 (A Study on the Effect of Exhaust Pipe Length of 4 Cycle 4 Cylinder S.I. Engine on the Performance)

  • 정수진;김태훈;조진호
    • 한국안전학회지
    • /
    • 제8권3호
    • /
    • pp.3-12
    • /
    • 1993
  • In reciprocating internal combustion engine, engine performance Is greatly affected by volumetric efficiency. For gas flow, the dynamic effects caused by the pressure pulsation have influence on the volumetric efficiency and correlate to the configuration and pipe length of intake-exhaust system. In this study, the analytic investigation of the unstudy flow In exhaust pipe has been carried out by using the method of characteristics to predict volumetric efficiency. In conculusion, it is possible to take account of the exhaust pipe tuning effect in predicting the engine performance, by the analytic solution of the unsteady flow in the pipes, and comparision of prediction with experimental datas show a good agreement on the pressure varision in the exhaust pipe which has Influence on the volumetric efficiency and performance of engine.

  • PDF

Thermal Flow Analysis of Vehicle Engine Cooling System

  • Park, Kyoung-Suk;Won, Jong-Phil;Heo, Hyung-Seok
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.975-985
    • /
    • 2002
  • This paper deals with theoretical model developed for analyzing the heat transfer of automotive cooling systems. The model has a modular structure which links various cooling system submodels. From the model, heat transfer rate of automotive cooling systems can be predicted, providing useful information at the early stages of the design and development. The aim of the study is to develop a simulation program for automotive cooling system analysis and a performance analysis program for analyzing heat exchanger. Heat release rate from combustion gas to coolant through the cylinder wall in engine cylinder was analysed by using an engine cycle simulation program. In this paper, details of each submodel are described together with the overall structure of the vehicle model.

상변화를 동반한 충돌분무의 거동해석 (Analysis of the Impinging Spray Behavior Accompanying with Change of Phase)

  • 송홍종;차건종;김덕줄
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.852-859
    • /
    • 2000
  • The emission in the exhaust gas from diesel engine is effected by the fuel spray characteristics. The spray of D.I. diesel engine impinges on a piston cavity and a cylinder wall. It is very important to know exactly the distribution and behavior of the spray inside cylinder. The objective of this study is to develop more accurate evaporation model. The EPISO code was used to analyze the flow characteristics in the engine. The Wakil model and the Faeth model are applied to the EPISO code to analyze the behavior of impinging spray. And also experimental and numerical analysis were carried out. The spray behavior characteristics were investigated by changing injection pressure, ambient pressure and temperature. The behavior of impinging spray was strongly effected by the change of ambient pressure and temperature. The effects of evaporation and rebounding droplet should be considered.

디젤엔진 관련 Soot 부착 및 재유입에 관한 화염에서의 연구 (A Flame Study of Soot Deposition and Reentrainment in Application to Control of Diesel Soot Emission)

  • 김성근;박종인
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2626-2636
    • /
    • 1996
  • A study of soot deposition and reentrainment was carried out both theoretically and experimentally to understand behavior of soot formed by incomplete combustion in a diesel engine. Theoretically, soot deposition on engine cylinder wall and/or piston head was studied with a stagnation point flow approximation. Soot reentrainment occurred upon exhaust gas blowdown was also studied by assuming a long-normal shear velocity distribution. Experimentally, a LPG$O_2/N_2$ flame impinging on a disk, produced by a concentric tubular burner, was chosen as deposition configuration and a shear flow unit with compressed air was installed for the study of reentrainment. For selected flame configuration, soot deposition measurements were conducted and showed that the dominant deposition mechanism was thermophoresis. Distributions of gas temperature and soot number density were estimated by combining data obtained by a B-type thermocouple with a thermophoretic transport theory. Disk temperature distributions were directly measured using a K-type thermocouple. Soot size and morphology were estimated from a TEM photograph. Ratios of soot deposit to reentrained amount were measured for a wide range of shear flow velocities, which showed that the reentrainment model was reasonable.

공압 시스템을 이용한 바이패스형 매연여과장치의 실험적 연구 (An experimental study on the bypass-type DPF using pneumatic cylinder systems)

  • 김상암
    • 수산해양기술연구
    • /
    • 제54권1호
    • /
    • pp.73-80
    • /
    • 2018
  • Intermittent duty of emergency generator has problems emitting large quantities of PM and NOx in exhaust gas. The aim of this study is to propose DPF system which can be applied to medium-large emergency generators. The system is composed of soot dust collector, silencer and filter trap, which is designed to reduce PM emissions at the emergency generator start-up. The pneumatic system controls a flow direction of exhaust gas to pass through the soot collector and filter trap until the engine reaches complete combustion condition. An experiment is performed to measure PM content and concentration to analyze the performance and characteristics of the proposed system.

대전류 영역에서의 가스차단기 내의 아크의 자발적인 흐름현상에 따른 에너지 전달의 수치적 해석 (The Study on the Self-Flow Generation Phenomena in a Gas Circuit Breaker)

  • 최재원;최승길;강형부
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 E
    • /
    • pp.1837-1839
    • /
    • 1997
  • This study presents the energy transfer of thermal arc in the circuit breaker with self-generation flow without puffer action. The phenomenon of pressure increase in the cylinder which encloses fixed contact was focused on and rising current stage was considered. Temperature and velocity of arc plasma were calculated by using energy balance equation and the amount of energy transfer due to convective flow was calculated.

  • PDF

링팩내의 피스톤링 윤활에 관한 연구 (Development of Piston Ring Lubrication for the Ring Pack Arrangement)

  • 심현해;권오관
    • Tribology and Lubricants
    • /
    • 제1권1호
    • /
    • pp.46-58
    • /
    • 1985
  • 피스톤링과 실린더벽 사이의 윤활이 왕복운동을 하며 동하중을 받는 포물선형의 슬라이드 베어링의 유체 윤활로 보고 전개하였다. 싸이클 상의 유막 두께의 변화, 윤활유 운반과 마찰력을 계산하는 과정이 개략적으로 설명되었고, 이들 성능 특성들에 대한 링 높이, 링 앞면 곡률반경과 링의 비대칭의 영향을 고찰하였다. 단독링에 대한 해석결과를 조금 더 복잡한 링 팩에 대해 확대 적용하였다. 링의 부하가 되는 링 주위의 압력들은 실험적으로 또는 가스 흐름 해석으로부터 얻을 수 있는데 본 연구에서는 후자를 택하였다. 링팩에서의 유체 연속 및 윤활유 부족에 따른 수치 해석에 주안점을 두었다.

디젤기관의 배기 배출물에 미치는 스크러버형 EGR 시스템 재순환 배기의 영향에 관한 연구 (A Study on the Effect of Recirculated Exhaust Gas with Scrubber EGR System upon Exhaust Emissions in Diesel Engines)

  • 배명환;하정호
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1247-1254
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of $NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The simultaneous control of $NO_x$ and soot emissions in diesel engines is targeted in this study. The EGR system is used to reduce $NO_x$ emissions, and a novel diesel soot removal device with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector has 144 nozzles in 1.0 mm diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration and the mean equivalence ratio calculated by the intake air flow and fuel consumption rate, and the exhaust oxygen concentration measured are used to analyse and discuss the influences of EGR rate on $NO_x$ and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions are decreased and soot emissions are increased owing to the drop of intake oxygen concentration and exhaust oxygen concentration, and the rise of equivalence ratio as the EGR rate rises.